Trait malachite_base::num::arithmetic::traits::SaturatingSubMul
source · pub trait SaturatingSubMul<Y = Self, Z = Self> {
type Output;
// Required method
fn saturating_sub_mul(self, y: Y, z: Z) -> Self::Output;
}
Expand description
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
Required Associated Types§
Required Methods§
fn saturating_sub_mul(self, y: Y, z: Z) -> Self::Output
Implementations on Foreign Types§
source§impl SaturatingSubMul for i8
impl SaturatingSubMul for i8
source§fn saturating_sub_mul(self, y: i8, z: i8) -> i8
fn saturating_sub_mul(self, y: i8, z: i8) -> i8
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i8
source§impl SaturatingSubMul for i16
impl SaturatingSubMul for i16
source§fn saturating_sub_mul(self, y: i16, z: i16) -> i16
fn saturating_sub_mul(self, y: i16, z: i16) -> i16
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i16
source§impl SaturatingSubMul for i32
impl SaturatingSubMul for i32
source§fn saturating_sub_mul(self, y: i32, z: i32) -> i32
fn saturating_sub_mul(self, y: i32, z: i32) -> i32
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i32
source§impl SaturatingSubMul for i64
impl SaturatingSubMul for i64
source§fn saturating_sub_mul(self, y: i64, z: i64) -> i64
fn saturating_sub_mul(self, y: i64, z: i64) -> i64
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i64
source§impl SaturatingSubMul for i128
impl SaturatingSubMul for i128
source§fn saturating_sub_mul(self, y: i128, z: i128) -> i128
fn saturating_sub_mul(self, y: i128, z: i128) -> i128
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i128
source§impl SaturatingSubMul for isize
impl SaturatingSubMul for isize
source§fn saturating_sub_mul(self, y: isize, z: isize) -> isize
fn saturating_sub_mul(self, y: isize, z: isize) -> isize
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = isize
source§impl SaturatingSubMul for u8
impl SaturatingSubMul for u8
source§fn saturating_sub_mul(self, y: u8, z: u8) -> u8
fn saturating_sub_mul(self, y: u8, z: u8) -> u8
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u8
source§impl SaturatingSubMul for u16
impl SaturatingSubMul for u16
source§fn saturating_sub_mul(self, y: u16, z: u16) -> u16
fn saturating_sub_mul(self, y: u16, z: u16) -> u16
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u16
source§impl SaturatingSubMul for u32
impl SaturatingSubMul for u32
source§fn saturating_sub_mul(self, y: u32, z: u32) -> u32
fn saturating_sub_mul(self, y: u32, z: u32) -> u32
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u32
source§impl SaturatingSubMul for u64
impl SaturatingSubMul for u64
source§fn saturating_sub_mul(self, y: u64, z: u64) -> u64
fn saturating_sub_mul(self, y: u64, z: u64) -> u64
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u64
source§impl SaturatingSubMul for u128
impl SaturatingSubMul for u128
source§fn saturating_sub_mul(self, y: u128, z: u128) -> u128
fn saturating_sub_mul(self, y: u128, z: u128) -> u128
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u128
source§impl SaturatingSubMul for usize
impl SaturatingSubMul for usize
source§fn saturating_sub_mul(self, y: usize, z: usize) -> usize
fn saturating_sub_mul(self, y: usize, z: usize) -> usize
Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x - yz & \text{if} \quad m \leq x - yz \leq M, \\
M & \text{if} \quad x - yz > M, \\
m & \text{if} \quad x - yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.