[−][src]Struct no_std_net::Ipv4Addr
An IPv4 address.
IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.
See IpAddr
for a type encompassing both IPv4 and IPv6 addresses.
Textual representation
Ipv4Addr
provides a FromStr
implementation. The four octets are in decimal
notation, divided by .
(this is called "dot-decimal notation").
Examples
use no_std_net::Ipv4Addr; let localhost = Ipv4Addr::new(127, 0, 0, 1); assert_eq!("127.0.0.1".parse(), Ok(localhost)); assert_eq!(localhost.is_loopback(), true);
Implementations
impl Ipv4Addr
[src]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr
[src]
Creates a new IPv4 address from four eight-bit octets.
The result will represent the IP address a
.b
.c
.d
.
Examples
use no_std_net::Ipv4Addr; let addr = Ipv4Addr::new(127, 0, 0, 1);
pub const fn localhost() -> Ipv4Addr
[src]
Creates a new IPv4 address with the address pointing to localhost: 127.0.0.1.
Examples
use no_std_net::Ipv4Addr; let addr = Ipv4Addr::localhost(); assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
pub const fn unspecified() -> Ipv4Addr
[src]
Creates a new IPv4 address representing an unspecified address: 0.0.0.0
Examples
use no_std_net::Ipv4Addr; let addr = Ipv4Addr::unspecified(); assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
pub const fn octets(&self) -> [u8; 4]
[src]
Returns the four eight-bit integers that make up this address.
Examples
use no_std_net::Ipv4Addr; let addr = Ipv4Addr::new(127, 0, 0, 1); assert_eq!(addr.octets(), [127, 0, 0, 1]);
pub const fn is_unspecified(&self) -> bool
[src]
Returns true
for the special 'unspecified' address (0.0.0.0).
This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
pub const fn is_loopback(&self) -> bool
[src]
Returns true
if this is a loopback address (127.0.0.0/8).
This property is defined by IETF RFC 1122.
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
pub const fn is_private(&self) -> bool
[src]
Returns true
if this is a private address.
The private address ranges are defined in IETF RFC 1918 and include:
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
pub const fn is_link_local(&self) -> bool
[src]
Returns true
if the address is link-local (169.254.0.0/16).
This property is defined by IETF RFC 3927.
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
pub const fn is_global(&self) -> bool
[src]
Returns true
if the address appears to be globally routable.
See iana-ipv4-special-registry.
The following return false:
- private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
- the loopback address (127.0.0.0/8)
- the link-local address (169.254.0.0/16)
- the broadcast address (255.255.255.255/32)
- test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
- the unspecified address (0.0.0.0)
Examples
use no_std_net::Ipv4Addr; fn main() { assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true); }
pub const fn is_multicast(&self) -> bool
[src]
Returns true
if this is a multicast address (224.0.0.0/4).
Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
pub const fn is_broadcast(&self) -> bool
[src]
Returns true
if this is a broadcast address (255.255.255.255).
A broadcast address has all octets set to 255 as defined in IETF RFC 919.
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
pub const fn is_documentation(&self) -> bool
[src]
Returns true
if this address is in a range designated for documentation.
This is defined in IETF RFC 5737:
- 192.0.2.0/24 (TEST-NET-1)
- 198.51.100.0/24 (TEST-NET-2)
- 203.0.113.0/24 (TEST-NET-3)
Examples
use no_std_net::Ipv4Addr; assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
pub const fn to_ipv6_compatible(&self) -> Ipv6Addr
[src]
Converts this address to an IPv4-compatible IPv6 address.
a.b.c.d becomes ::a.b.c.d
Examples
use no_std_net::{Ipv4Addr, Ipv6Addr}; assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(), Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767));
pub const fn to_ipv6_mapped(&self) -> Ipv6Addr
[src]
Converts this address to an IPv4-mapped IPv6 address.
a.b.c.d becomes ::ffff:a.b.c.d
Examples
use no_std_net::{Ipv4Addr, Ipv6Addr}; assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(), Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));
Trait Implementations
impl Clone for Ipv4Addr
[src]
pub fn clone(&self) -> Ipv4Addr
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Copy for Ipv4Addr
[src]
impl Debug for Ipv4Addr
[src]
impl Display for Ipv4Addr
[src]
impl Eq for Ipv4Addr
[src]
impl From<[u8; 4]> for Ipv4Addr
[src]
pub fn from(octets: [u8; 4]) -> Ipv4Addr
[src]
Creates an Ipv4Addr
from a four element byte array.
Examples
use no_std_net::Ipv4Addr; let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
impl From<Ipv4Addr> for IpAddr
[src]
pub fn from(ipv4: Ipv4Addr) -> IpAddr
[src]
Copies this address to a new IpAddr::V4
.
Examples
use no_std_net::{IpAddr, Ipv4Addr}; let addr = Ipv4Addr::new(127, 0, 0, 1); assert_eq!( IpAddr::V4(addr), IpAddr::from(addr) )
impl From<Ipv4Addr> for u32
[src]
impl From<u32> for Ipv4Addr
[src]
impl FromStr for Ipv4Addr
[src]
type Err = AddrParseError
The associated error which can be returned from parsing.
pub fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError>
[src]
impl Hash for Ipv4Addr
[src]
pub fn hash<__H: Hasher>(&self, state: &mut __H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl Ord for Ipv4Addr
[src]
pub fn cmp(&self, other: &Ipv4Addr) -> Ordering
[src]
#[must_use]pub fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]
impl PartialEq<IpAddr> for Ipv4Addr
[src]
pub fn eq(&self, other: &IpAddr) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<Ipv4Addr> for Ipv4Addr
[src]
impl PartialEq<Ipv4Addr> for IpAddr
[src]
pub fn eq(&self, other: &Ipv4Addr) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<IpAddr> for Ipv4Addr
[src]
pub fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Ipv4Addr> for Ipv4Addr
[src]
pub fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>
[src]
pub fn lt(&self, other: &Ipv4Addr) -> bool
[src]
pub fn le(&self, other: &Ipv4Addr) -> bool
[src]
pub fn gt(&self, other: &Ipv4Addr) -> bool
[src]
pub fn ge(&self, other: &Ipv4Addr) -> bool
[src]
impl PartialOrd<Ipv4Addr> for IpAddr
[src]
pub fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl StructuralEq for Ipv4Addr
[src]
impl StructuralPartialEq for Ipv4Addr
[src]
Auto Trait Implementations
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,