[−][src]Struct no_std_net::Ipv6Addr
An IPv6 address.
IPv6 addresses are defined as 128-bit integers in IETF RFC 4291. They are usually represented as eight 16-bit segments.
See IpAddr
for a type encompassing both IPv4 and IPv6 addresses.
Textual representation
Ipv6Addr
provides a FromStr
implementation. There are many ways to represent
an IPv6 address in text, but in general, each segments is written in hexadecimal
notation, and segments are separated by :
. For more information, see
IETF RFC 5952.
Examples
use no_std_net::Ipv6Addr; let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); assert_eq!("::1".parse(), Ok(localhost)); assert_eq!(localhost.is_loopback(), true);
Implementations
impl Ipv6Addr
[src]
pub const fn new(
a: u16,
b: u16,
c: u16,
d: u16,
e: u16,
f: u16,
g: u16,
h: u16
) -> Ipv6Addr
[src]
a: u16,
b: u16,
c: u16,
d: u16,
e: u16,
f: u16,
g: u16,
h: u16
) -> Ipv6Addr
Creates a new IPv6 address from eight 16-bit segments.
The result will represent the IP address a:b:c:d:e:f:g:h.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
pub const fn localhost() -> Ipv6Addr
[src]
Creates a new IPv6 address representing localhost: ::1
.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::localhost(); assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
pub const fn unspecified() -> Ipv6Addr
[src]
Creates a new IPv6 address representing the unspecified address: ::
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::unspecified(); assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
pub const fn first_segment(&self) -> u16
[src]
Returns the first 16-bit segment that makes up this address.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0x0011, 0x2233, 0, 0, 0, 0, 0, 0).first_segment(), 0x11);
pub const fn second_segment(&self) -> u16
[src]
Returns the second 16-bit segment that makes up this address.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0x0011, 0x2233, 0, 0, 0, 0, 0, 0).second_segment(), 0x2233);
pub const fn segments(&self) -> [u16; 8]
[src]
Returns the eight 16-bit segments that make up this address.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
pub const fn is_unspecified(&self) -> bool
[src]
Returns true
for the special 'unspecified' address (::).
This property is defined in IETF RFC 4291.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
pub const fn is_loopback(&self) -> bool
[src]
Returns true
if this is a loopback address (::1).
This property is defined in IETF RFC 4291.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
pub const fn is_global(&self) -> bool
[src]
Returns true
if the address appears to be globally routable.
The following return false
:
- the loopback address
- link-local, site-local, and unique local unicast addresses
- interface-, link-, realm-, admin- and site-local multicast addresses
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true); }
pub const fn is_unique_local(&self) -> bool
[src]
Returns true
if this is a unique local address (fc00::/7).
This property is defined in IETF RFC 4193.
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); }
pub const fn is_unicast_link_local(&self) -> bool
[src]
Returns true
if the address is unicast and link-local (fe80::/10).
This property is defined in IETF RFC 4291.
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_link_local(), false); assert_eq!(Ipv6Addr::new(0xfe8a, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); }
pub const fn is_unicast_site_local(&self) -> bool
[src]
Returns true
if this is a deprecated unicast site-local address
(fec0::/10).
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(), false); assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true); }
pub const fn is_documentation(&self) -> bool
[src]
Returns true
if this is an address reserved for documentation
(2001:db8::/32).
This property is defined in IETF RFC 3849.
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); }
pub const fn is_unicast_global(&self) -> bool
[src]
Returns true
if the address is a globally routable unicast address.
The following return false:
- the loopback address
- the link-local addresses
- the (deprecated) site-local addresses
- unique local addresses
- the unspecified address
- the address range reserved for documentation
Examples
use no_std_net::Ipv6Addr; fn main() { assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); }
pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope>
[src]
Returns the address's multicast scope if the address is multicast.
Examples
use no_std_net::{Ipv6Addr, Ipv6MulticastScope}; fn main() { assert_eq!(Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), Some(Ipv6MulticastScope::Global)); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); }
pub const fn is_multicast(&self) -> bool
[src]
Returns true
if this is a multicast address (ff00::/8).
This property is defined by IETF RFC 4291.
Examples
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
pub const fn to_ipv4(&self) -> Option<Ipv4Addr>
[src]
Converts this address to an IPv4 address. Returns None
if this address is
neither IPv4-compatible or IPv4-mapped.
::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
Examples
use no_std_net::{Ipv4Addr, Ipv6Addr}; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), Some(Ipv4Addr::new(192, 10, 2, 255))); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), Some(Ipv4Addr::new(0, 0, 0, 1)));
pub const fn octets(&self) -> [u8; 16]
[src]
Returns the sixteen eight-bit integers the IPv6 address consists of.
use no_std_net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
Trait Implementations
impl Clone for Ipv6Addr
[src]
pub fn clone(&self) -> Ipv6Addr
[src]
pub fn clone_from(&mut self, source: &Self)
1.0.0[src]
impl Copy for Ipv6Addr
[src]
impl Debug for Ipv6Addr
[src]
impl Display for Ipv6Addr
[src]
impl Eq for Ipv6Addr
[src]
impl From<[u16; 8]> for Ipv6Addr
[src]
pub fn from(segments: [u16; 8]) -> Ipv6Addr
[src]
Creates an Ipv6Addr
from an eight element 16-bit array.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::from([ 525u16, 524u16, 523u16, 522u16, 521u16, 520u16, 519u16, 518u16, ]); assert_eq!( Ipv6Addr::new( 0x20d, 0x20c, 0x20b, 0x20a, 0x209, 0x208, 0x207, 0x206 ), addr );
impl From<[u8; 16]> for Ipv6Addr
[src]
pub fn from(octets: [u8; 16]) -> Ipv6Addr
[src]
Creates an Ipv6Addr
from a sixteen element byte array.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::from([ 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, ]); assert_eq!( Ipv6Addr::new( 0x1918, 0x1716, 0x1514, 0x1312, 0x1110, 0x0f0e, 0x0d0c, 0x0b0a ), addr );
impl From<Ipv6Addr> for IpAddr
[src]
pub fn from(ipv6: Ipv6Addr) -> IpAddr
[src]
Copies this address to a new IpAddr::V6
.
Examples
use no_std_net::{IpAddr, Ipv6Addr}; let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); assert_eq!( IpAddr::V6(addr), IpAddr::from(addr) );
impl From<Ipv6Addr> for u128
[src]
pub fn from(ip: Ipv6Addr) -> u128
[src]
Convert an Ipv6Addr
into a host byte order u128
.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::new( 0x1020, 0x3040, 0x5060, 0x7080, 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, ); assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
impl From<u128> for Ipv6Addr
[src]
pub fn from(ip: u128) -> Ipv6Addr
[src]
Convert a host byte order u128
into an Ipv6Addr
.
Examples
use no_std_net::Ipv6Addr; let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128); assert_eq!( Ipv6Addr::new( 0x1020, 0x3040, 0x5060, 0x7080, 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, ), addr);
impl FromStr for Ipv6Addr
[src]
type Err = AddrParseError
The associated error which can be returned from parsing.
pub fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError>
[src]
impl Hash for Ipv6Addr
[src]
pub fn hash<__H: Hasher>(&self, state: &mut __H)
[src]
pub fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
H: Hasher,
impl Ord for Ipv6Addr
[src]
pub fn cmp(&self, other: &Ipv6Addr) -> Ordering
[src]
#[must_use]pub fn max(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn min(self, other: Self) -> Self
1.21.0[src]
#[must_use]pub fn clamp(self, min: Self, max: Self) -> Self
1.50.0[src]
impl PartialEq<IpAddr> for Ipv6Addr
[src]
pub fn eq(&self, other: &IpAddr) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialEq<Ipv6Addr> for Ipv6Addr
[src]
impl PartialEq<Ipv6Addr> for IpAddr
[src]
pub fn eq(&self, other: &Ipv6Addr) -> bool
[src]
#[must_use]pub fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<IpAddr> for Ipv6Addr
[src]
pub fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl PartialOrd<Ipv6Addr> for Ipv6Addr
[src]
pub fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>
[src]
pub fn lt(&self, other: &Ipv6Addr) -> bool
[src]
pub fn le(&self, other: &Ipv6Addr) -> bool
[src]
pub fn gt(&self, other: &Ipv6Addr) -> bool
[src]
pub fn ge(&self, other: &Ipv6Addr) -> bool
[src]
impl PartialOrd<Ipv6Addr> for IpAddr
[src]
pub fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>
[src]
#[must_use]pub fn lt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn le(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn gt(&self, other: &Rhs) -> bool
1.0.0[src]
#[must_use]pub fn ge(&self, other: &Rhs) -> bool
1.0.0[src]
impl StructuralEq for Ipv6Addr
[src]
impl StructuralPartialEq for Ipv6Addr
[src]
Auto Trait Implementations
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
pub fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,