1.0.0[][src]Struct orbtk_widgets::prelude::HashSet

pub struct HashSet<T, S = RandomState> { /* fields omitted */ }

A hash set implemented as a HashMap where the value is ().

As with the HashMap type, a HashSet requires that the elements implement the Eq and Hash traits. This can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself, it is important that the following property holds:

k1 == k2 -> hash(k1) == hash(k2)

In other words, if two keys are equal, their hashes must be equal.

It is a logic error for an item to be modified in such a way that the item's hash, as determined by the Hash trait, or its equality, as determined by the Eq trait, changes while it is in the set. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

Examples

use std::collections::HashSet;
// Type inference lets us omit an explicit type signature (which
// would be `HashSet<String>` in this example).
let mut books = HashSet::new();

// Add some books.
books.insert("A Dance With Dragons".to_string());
books.insert("To Kill a Mockingbird".to_string());
books.insert("The Odyssey".to_string());
books.insert("The Great Gatsby".to_string());

// Check for a specific one.
if !books.contains("The Winds of Winter") {
    println!("We have {} books, but The Winds of Winter ain't one.",
             books.len());
}

// Remove a book.
books.remove("The Odyssey");

// Iterate over everything.
for book in &books {
    println!("{}", book);
}

The easiest way to use HashSet with a custom type is to derive Eq and Hash. We must also derive PartialEq, this will in the future be implied by Eq.

use std::collections::HashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
    name: String,
    power: usize,
}

let mut vikings = HashSet::new();

vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Olaf".to_string(), power: 4 });
vikings.insert(Viking { name: "Harald".to_string(), power: 8 });

// Use derived implementation to print the vikings.
for x in &vikings {
    println!("{:?}", x);
}

A HashSet with fixed list of elements can be initialized from an array:

use std::collections::HashSet;

let viking_names: HashSet<&'static str> =
    [ "Einar", "Olaf", "Harald" ].iter().cloned().collect();
// use the values stored in the set

Implementations

impl<T> HashSet<T, RandomState>[src]

pub fn new() -> HashSet<T, RandomState>[src]

Creates an empty HashSet.

The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples

use std::collections::HashSet;
let set: HashSet<i32> = HashSet::new();

pub fn with_capacity(capacity: usize) -> HashSet<T, RandomState>[src]

Creates an empty HashSet with the specified capacity.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Examples

use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(10);
assert!(set.capacity() >= 10);

impl<T, S> HashSet<T, S>[src]

pub fn capacity(&self) -> usize[src]

Returns the number of elements the set can hold without reallocating.

Examples

use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);

pub fn iter(&self) -> Iter<'_, T>[src]

An iterator visiting all elements in arbitrary order. The iterator element type is &'a T.

Examples

use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");

// Will print in an arbitrary order.
for x in set.iter() {
    println!("{}", x);
}

pub fn len(&self) -> usize[src]

Returns the number of elements in the set.

Examples

use std::collections::HashSet;

let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns true if the set contains no elements.

Examples

use std::collections::HashSet;

let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());

pub fn drain(&mut self) -> Drain<'_, T>1.6.0[src]

Clears the set, returning all elements in an iterator.

Examples

use std::collections::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert!(!set.is_empty());

// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
    println!("{}", i);
}

assert!(set.is_empty());

pub fn clear(&mut self)[src]

Clears the set, removing all values.

Examples

use std::collections::HashSet;

let mut v = HashSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());

pub fn with_hasher(hasher: S) -> HashSet<T, S>1.7.0[src]

Creates a new empty hash set which will use the given hasher to hash keys.

The hash set is also created with the default initial capacity.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use std::collections::HashSet;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut set = HashSet::with_hasher(s);
set.insert(2);

pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S>1.7.0[src]

Creates an empty HashSet with the specified capacity, using hasher to hash the keys.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use std::collections::HashSet;
use std::collections::hash_map::RandomState;

let s = RandomState::new();
let mut set = HashSet::with_capacity_and_hasher(10, s);
set.insert(1);

pub fn hasher(&self) -> &S1.9.0[src]

Returns a reference to the set's BuildHasher.

Examples

use std::collections::HashSet;
use std::collections::hash_map::RandomState;

let hasher = RandomState::new();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();

impl<T, S> HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Hash
[src]

pub fn reserve(&mut self, additional: usize)[src]

Reserves capacity for at least additional more elements to be inserted in the HashSet. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples

use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>[src]

🔬 This is a nightly-only experimental API. (try_reserve)

new API

Tries to reserve capacity for at least additional more elements to be inserted in the given HashSet<K,V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples

#![feature(try_reserve)]
use std::collections::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");

pub fn shrink_to_fit(&mut self)[src]

Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples

use std::collections::HashSet;

let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);

pub fn shrink_to(&mut self, min_capacity: usize)[src]

🔬 This is a nightly-only experimental API. (shrink_to)

new API

Shrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Panics if the current capacity is smaller than the supplied minimum capacity.

Examples

#![feature(shrink_to)]
use std::collections::HashSet;

let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);

pub fn difference(&'a self, other: &'a HashSet<T, S>) -> Difference<'a, T, S>[src]

Visits the values representing the difference, i.e., the values that are in self but not in other.

Examples

use std::collections::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1
}

let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());

// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());

pub fn symmetric_difference(
    &'a self,
    other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>
[src]

Visits the values representing the symmetric difference, i.e., the values that are in self or in other but not in both.

Examples

use std::collections::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();

assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());

pub fn intersection(
    &'a self,
    other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>
[src]

Visits the values representing the intersection, i.e., the values that are both in self and other.

Examples

use std::collections::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
    println!("{}", x);
}

let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());

pub fn union(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>[src]

Visits the values representing the union, i.e., all the values in self or other, without duplicates.

Examples

use std::collections::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
    println!("{}", x);
}

let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());

pub fn contains<Q>(&self, value: &Q) -> bool where
    Q: Hash + Eq + ?Sized,
    T: Borrow<Q>, 
[src]

Returns true if the set contains a value.

The value may be any borrowed form of the set's value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use std::collections::HashSet;

let set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);

pub fn get<Q>(&self, value: &Q) -> Option<&T> where
    Q: Hash + Eq + ?Sized,
    T: Borrow<Q>, 
1.9.0[src]

Returns a reference to the value in the set, if any, that is equal to the given value.

The value may be any borrowed form of the set's value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use std::collections::HashSet;

let set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);

pub fn get_or_insert(&mut self, value: T) -> &T[src]

🔬 This is a nightly-only experimental API. (hash_set_entry)

Inserts the given value into the set if it is not present, then returns a reference to the value in the set.

Examples

#![feature(hash_set_entry)]

use std::collections::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was inserted

pub fn get_or_insert_owned<Q>(&mut self, value: &Q) -> &T where
    Q: Hash + Eq + ToOwned<Owned = T> + ?Sized,
    T: Borrow<Q>, 
[src]

🔬 This is a nightly-only experimental API. (hash_set_entry)

Inserts an owned copy of the given value into the set if it is not present, then returns a reference to the value in the set.

Examples

#![feature(hash_set_entry)]

use std::collections::HashSet;

let mut set: HashSet<String> = ["cat", "dog", "horse"]
    .iter().map(|&pet| pet.to_owned()).collect();

assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
    let value = set.get_or_insert_owned(pet);
    assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted

pub fn get_or_insert_with<Q, F>(&mut self, value: &Q, f: F) -> &T where
    F: FnOnce(&Q) -> T,
    Q: Hash + Eq + ?Sized,
    T: Borrow<Q>, 
[src]

🔬 This is a nightly-only experimental API. (hash_set_entry)

Inserts a value computed from f into the set if the given value is not present, then returns a reference to the value in the set.

Examples

#![feature(hash_set_entry)]

use std::collections::HashSet;

let mut set: HashSet<String> = ["cat", "dog", "horse"]
    .iter().map(|&pet| pet.to_owned()).collect();

assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
    let value = set.get_or_insert_with(pet, str::to_owned);
    assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted

pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool[src]

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

Examples

use std::collections::HashSet;

let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = HashSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);

pub fn is_subset(&self, other: &HashSet<T, S>) -> bool[src]

Returns true if the set is a subset of another, i.e., other contains at least all the values in self.

Examples

use std::collections::HashSet;

let sup: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = HashSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);

pub fn is_superset(&self, other: &HashSet<T, S>) -> bool[src]

Returns true if the set is a superset of another, i.e., self contains at least all the values in other.

Examples

use std::collections::HashSet;

let sub: HashSet<_> = [1, 2].iter().cloned().collect();
let mut set = HashSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);

pub fn insert(&mut self, value: T) -> bool[src]

Adds a value to the set.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned.

Examples

use std::collections::HashSet;

let mut set = HashSet::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);

pub fn replace(&mut self, value: T) -> Option<T>1.9.0[src]

Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.

Examples

use std::collections::HashSet;

let mut set = HashSet::new();
set.insert(Vec::<i32>::new());

assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);

pub fn remove<Q>(&mut self, value: &Q) -> bool where
    Q: Hash + Eq + ?Sized,
    T: Borrow<Q>, 
[src]

Removes a value from the set. Returns whether the value was present in the set.

The value may be any borrowed form of the set's value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use std::collections::HashSet;

let mut set = HashSet::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);

pub fn take<Q>(&mut self, value: &Q) -> Option<T> where
    Q: Hash + Eq + ?Sized,
    T: Borrow<Q>, 
1.9.0[src]

Removes and returns the value in the set, if any, that is equal to the given one.

The value may be any borrowed form of the set's value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use std::collections::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(&T) -> bool
1.18.0[src]

Retains only the elements specified by the predicate.

In other words, remove all elements e such that f(&e) returns false.

Examples

use std::collections::HashSet;

let xs = [1,2,3,4,5,6];
let mut set: HashSet<i32> = xs.iter().cloned().collect();
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);

Trait Implementations

impl<'_, '_, T, S> BitAnd<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the & operator.

fn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the intersection of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![2, 3, 4].into_iter().collect();

let set = &a & &b;

let mut i = 0;
let expected = [2, 3];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<'_, '_, T, S> BitOr<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the | operator.

fn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the union of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a | &b;

let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<'_, '_, T, S> BitXor<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the ^ operator.

fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the symmetric difference of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a ^ &b;

let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<T, S> Clone for HashSet<T, S> where
    S: Clone,
    T: Clone
[src]

impl<T, S> Debug for HashSet<T, S> where
    T: Debug
[src]

impl<T, S> Default for HashSet<T, S> where
    S: Default
[src]

fn default() -> HashSet<T, S>[src]

Creates an empty HashSet<T, S> with the Default value for the hasher.

impl<'de, T, S> Deserialize<'de> for HashSet<T, S> where
    S: BuildHasher + Default,
    T: Deserialize<'de> + Eq + Hash
[src]

impl<T, S> Eq for HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Hash
[src]

impl<'a, T, S> Extend<&'a T> for HashSet<T, S> where
    S: BuildHasher,
    T: 'a + Eq + Hash + Copy
1.4.0[src]

impl<T, S> Extend<T> for HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Hash
[src]

impl<T, S> FromIterator<T> for HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash
[src]

impl<V, S> FromParallelIterator<V> for HashSet<V, S> where
    S: BuildHasher + Default + Send,
    V: Eq + Hash + Send
[src]

Collects values from a parallel iterator into a hashset.

impl<'de, T, S, E> IntoDeserializer<'de, E> for HashSet<T, S> where
    E: Error,
    S: BuildHasher,
    T: IntoDeserializer<'de, E> + Eq + Hash
[src]

type Deserializer = SeqDeserializer<<HashSet<T, S> as IntoIterator>::IntoIter, E>

The type of the deserializer being converted into.

impl<'a, T, S> IntoIterator for &'a HashSet<T, S>[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

impl<T, S> IntoIterator for HashSet<T, S>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T>

Which kind of iterator are we turning this into?

fn into_iter(self) -> IntoIter<T>[src]

Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.

Examples

use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a".to_string());
set.insert("b".to_string());

// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();

// Will print in an arbitrary order.
for x in &v {
    println!("{}", x);
}

impl<'a, T, S> IntoParallelIterator for &'a HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Sync + Hash
[src]

type Item = <&'a HashSet<T, S> as IntoIterator>::Item

The type of item that the parallel iterator will produce.

type Iter = Iter<'a, T>

The parallel iterator type that will be created.

impl<T, S> IntoParallelIterator for HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Send + Hash
[src]

type Item = <HashSet<T, S> as IntoIterator>::Item

The type of item that the parallel iterator will produce.

type Iter = IntoIter<T>

The parallel iterator type that will be created.

impl IntoPropertySource<SelectedEntities> for HashSet<Entity, RandomState>[src]

impl IntoPropertySource<SelectedIndices> for HashSet<usize, RandomState>[src]

impl<'a, T, S> ParallelExtend<&'a T> for HashSet<T, S> where
    S: BuildHasher + Send,
    T: 'a + Copy + Eq + Hash + Send + Sync
[src]

Extends a hash set with copied items from a parallel iterator.

impl<T, S> ParallelExtend<T> for HashSet<T, S> where
    S: BuildHasher + Send,
    T: Eq + Hash + Send
[src]

Extends a hash set with items from a parallel iterator.

impl<T, S> PartialEq<HashSet<T, S>> for HashSet<T, S> where
    S: BuildHasher,
    T: Eq + Hash
[src]

impl<T, H> Serialize for HashSet<T, H> where
    H: BuildHasher,
    T: Serialize + Eq + Hash
[src]

impl<'_, '_, T, S> Sub<&'_ HashSet<T, S>> for &'_ HashSet<T, S> where
    S: BuildHasher + Default,
    T: Eq + Hash + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the - operator.

fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use std::collections::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

Auto Trait Implementations

impl<T, S> RefUnwindSafe for HashSet<T, S> where
    S: RefUnwindSafe,
    T: RefUnwindSafe

impl<T, S> Send for HashSet<T, S> where
    S: Send,
    T: Send

impl<T, S> Sync for HashSet<T, S> where
    S: Sync,
    T: Sync

impl<T, S> Unpin for HashSet<T, S> where
    S: Unpin,
    T: Unpin

impl<T, S> UnwindSafe for HashSet<T, S> where
    S: UnwindSafe,
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<E> Component for E where
    E: Any
[src]

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<I> IntoIterator for I where
    I: Iterator
[src]

type Item = <I as Iterator>::Item

The type of the elements being iterated over.

type IntoIter = I

Which kind of iterator are we turning this into?

impl<T> IntoParallelIterator for T where
    T: ParallelIterator
[src]

type Iter = T

The parallel iterator type that will be created.

type Item = <T as ParallelIterator>::Item

The type of item that the parallel iterator will produce.

impl<'data, I> IntoParallelRefIterator<'data> for I where
    I: 'data + ?Sized,
    &'data I: IntoParallelIterator
[src]

type Iter = <&'data I as IntoParallelIterator>::Iter

The type of the parallel iterator that will be returned.

type Item = <&'data I as IntoParallelIterator>::Item

The type of item that the parallel iterator will produce. This will typically be an &'data T reference type. Read more

impl<T> SetParameter for T

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.