Struct snarkvm_algorithms::fft::domain::EvaluationDomain[][src]

pub struct EvaluationDomain<F: PrimeField> {
    pub size: u64,
    pub log_size_of_group: u32,
    pub size_as_field_element: F,
    pub size_inv: F,
    pub group_gen: F,
    pub group_gen_inv: F,
    pub generator_inv: F,
}
Expand description

Defines a domain over which finite field (I)FFTs can be performed. Works only for fields that have a large multiplicative subgroup of size that is a power-of-2.

Fields

size: u64
Expand description

The size of the domain.

log_size_of_group: u32
Expand description

log_2(self.size).

size_as_field_element: F
Expand description

Size of the domain as a field element.

size_inv: F
Expand description

Inverse of the size in the field.

group_gen: F
Expand description

A generator of the subgroup.

group_gen_inv: F
Expand description

Inverse of the generator of the subgroup.

generator_inv: F
Expand description

Multiplicative generator of the finite field.

Implementations

impl<F: PrimeField> EvaluationDomain<F>[src]

pub fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F[src]

Sample an element that is not in the domain.

pub fn new(num_coeffs: usize) -> Option<Self>[src]

Construct a domain that is large enough for evaluations of a polynomial having num_coeffs coefficients.

pub fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>[src]

Return the size of a domain that is large enough for evaluations of a polynomial having num_coeffs coefficients.

pub fn size(&self) -> usize[src]

Return the size of self.

pub fn fft(&self, coeffs: &[F]) -> Vec<F>[src]

Compute a FFT.

pub fn fft_in_place(&self, coeffs: &mut Vec<F>)[src]

Compute a FFT, modifying the vector in place.

pub fn ifft(&self, evals: &[F]) -> Vec<F>[src]

Compute a IFFT.

pub fn ifft_in_place(&self, evals: &mut Vec<F>)[src]

Compute a IFFT, modifying the vector in place.

pub fn coset_fft(&self, coeffs: &[F]) -> Vec<F>[src]

Compute a FFT over a coset of the domain.

pub fn coset_fft_in_place(&self, coeffs: &mut Vec<F>)[src]

Compute a FFT over a coset of the domain, modifying the input vector in place.

pub fn coset_ifft(&self, evals: &[F]) -> Vec<F>[src]

Compute a IFFT over a coset of the domain.

pub fn coset_ifft_in_place(&self, evals: &mut Vec<F>)[src]

Compute a IFFT over a coset of the domain, modifying the input vector in place.

pub fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F>[src]

Evaluate all the lagrange polynomials defined by this domain at the point tau.

pub fn vanishing_polynomial(&self) -> SparsePolynomial<F>[src]

Return the sparse vanishing polynomial.

pub fn evaluate_vanishing_polynomial(&self, tau: F) -> F[src]

This evaluates the vanishing polynomial for this domain at tau. For multiplicative subgroups, this polynomial is z(X) = X^self.size - 1.

pub fn elements(&self) -> Elements<F>

Notable traits for Elements<F>

impl<F: PrimeField> Iterator for Elements<F> type Item = F;
[src]

Return an iterator over the elements of the domain.

pub fn divide_by_vanishing_poly_on_coset_in_place(&self, evals: &mut [F])[src]

The target polynomial is the zero polynomial in our evaluation domain, so we must perform division over a coset.

pub fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize[src]

Given an index which assumes the first elements of this domain are the elements of another (sub)domain with size size_s, this returns the actual index into this domain.

#[must_use]
pub fn mul_polynomials_in_evaluation_domain(
    &self,
    self_evals: &[F],
    other_evals: &[F]
) -> Vec<F>
[src]

Perform O(n) multiplication of two polynomials that are presented by their evaluations in the domain. Returns the evaluations of the product over the domain.

pub fn roots_of_unity(&self, root: F) -> Vec<F>[src]

Computes the first self.size / 2 roots of unity.

Trait Implementations

impl<F: PrimeField> CanonicalDeserialize for EvaluationDomain<F>[src]

fn deserialize<R: Read>(reader: &mut R) -> Result<Self, SerializationError>[src]

Reads Self from reader.

fn deserialize_uncompressed<R: Read>(
    reader: &mut R
) -> Result<Self, SerializationError>
[src]

Reads Self from reader without compression.

impl<F: PrimeField> CanonicalSerialize for EvaluationDomain<F>[src]

fn serialize<W: Write>(&self, writer: &mut W) -> Result<(), SerializationError>[src]

Serializes self into writer.

fn serialized_size(&self) -> usize[src]

fn serialize_uncompressed<W: Write>(
    &self,
    writer: &mut W
) -> Result<(), SerializationError>
[src]

Serializes self into writer without compression.

fn uncompressed_size(&self) -> usize[src]

impl<F: Clone + PrimeField> Clone for EvaluationDomain<F>[src]

fn clone(&self) -> EvaluationDomain<F>[src]

Returns a copy of the value. Read more

fn clone_from(&mut self, source: &Self)1.0.0[src]

Performs copy-assignment from source. Read more

impl<F: PrimeField> Debug for EvaluationDomain<F>[src]

fn fmt(&self, f: &mut Formatter<'_>) -> Result[src]

Formats the value using the given formatter. Read more

impl<F: Hash + PrimeField> Hash for EvaluationDomain<F>[src]

fn hash<__H: Hasher>(&self, state: &mut __H)[src]

Feeds this value into the given Hasher. Read more

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given Hasher. Read more

impl<F: PartialEq + PrimeField> PartialEq<EvaluationDomain<F>> for EvaluationDomain<F>[src]

fn eq(&self, other: &EvaluationDomain<F>) -> bool[src]

This method tests for self and other values to be equal, and is used by ==. Read more

fn ne(&self, other: &EvaluationDomain<F>) -> bool[src]

This method tests for !=.

impl<F: Copy + PrimeField> Copy for EvaluationDomain<F>[src]

impl<F: Eq + PrimeField> Eq for EvaluationDomain<F>[src]

impl<F: PrimeField> StructuralEq for EvaluationDomain<F>[src]

impl<F: PrimeField> StructuralPartialEq for EvaluationDomain<F>[src]

Auto Trait Implementations

impl<F> RefUnwindSafe for EvaluationDomain<F> where
    F: RefUnwindSafe

impl<F> Send for EvaluationDomain<F>

impl<F> Sync for EvaluationDomain<F>

impl<F> Unpin for EvaluationDomain<F> where
    F: Unpin

impl<F> UnwindSafe for EvaluationDomain<F> where
    F: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

pub fn type_id(&self) -> TypeId[src]

Gets the TypeId of self. Read more

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

pub fn borrow(&self) -> &T[src]

Immutably borrows from an owned value. Read more

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

pub fn borrow_mut(&mut self) -> &mut T[src]

Mutably borrows from an owned value. Read more

impl<Q, K> Equivalent<K> for Q where
    K: Borrow<Q> + ?Sized,
    Q: Eq + ?Sized
[src]

pub fn equivalent(&self, key: &K) -> bool[src]

Compare self to key and return true if they are equal.

impl<T> From<T> for T[src]

pub fn from(t: T) -> T[src]

Performs the conversion.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

pub fn into(self) -> U[src]

Performs the conversion.

impl<T> Pointable for T

pub const ALIGN: usize

The alignment of pointer.

type Init = T

The type for initializers.

pub unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more

pub unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more

pub unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more

pub unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

pub fn to_owned(&self) -> T[src]

Creates owned data from borrowed data, usually by cloning. Read more

pub fn clone_into(&self, target: &mut T)[src]

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]

Performs the conversion.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

pub fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]

Performs the conversion.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>, 

pub fn vzip(self) -> V