#[repr(transparent)]pub struct U256(pub [u128; 2]);
Expand description
A 256-bit unsigned integer type.
Tuple Fields§
§0: [u128; 2]
Implementations§
Source§impl U256
impl U256
Sourcepub const MIN: U256
pub const MIN: U256
The smallest value that can be represented by this integer type.
§Examples
Basic usage:
assert_eq!(U256::MIN, U256::new(0));
Sourcepub const MAX: U256
pub const MAX: U256
The largest value that can be represented by this integer type.
§Examples
Basic usage:
assert_eq!(
U256::MAX.to_string(),
"115792089237316195423570985008687907853269984665640564039457584007913129639935",
);
Sourcepub fn from_str_radix(src: &str, radix: u32) -> Result<U256, ParseIntError>
pub fn from_str_radix(src: &str, radix: u32) -> Result<U256, ParseIntError>
Converts a string slice in a given base to an integer.
The string is expected to be an optional +
sign followed by digits.
Leading and trailing whitespace represent an error. Digits are a subset
of these characters, depending on radix
:
0-9
a-z
A-Z
§Panics
This function panics if radix
is not in the range from 2 to 36.
§Examples
Basic usage:
assert_eq!(U256::from_str_radix("A", 16), Ok(U256::new(10)));
Sourcepub const fn count_ones(self) -> u32
pub const fn count_ones(self) -> u32
Returns the number of ones in the binary representation of self
.
§Examples
Basic usage:
let n = U256::new(0b01001100);
assert_eq!(n.count_ones(), 3);
Sourcepub const fn count_zeros(self) -> u32
pub const fn count_zeros(self) -> u32
Returns the number of zeros in the binary representation of self
.
§Examples
Basic usage:
assert_eq!(U256::MIN.count_zeros(), 256);
assert_eq!(U256::MAX.count_zeros(), 0);
Sourcepub fn leading_zeros(self) -> u32
pub fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation of
self
.
§Examples
Basic usage:
let n = U256::MAX >> 2u32;
assert_eq!(n.leading_zeros(), 2);
Sourcepub fn trailing_zeros(self) -> u32
pub fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation of
self
.
§Examples
Basic usage:
let n = U256::new(0b0101000);
assert_eq!(n.trailing_zeros(), 3);
Sourcepub fn leading_ones(self) -> u32
pub fn leading_ones(self) -> u32
Returns the number of leading ones in the binary representation of
self
.
§Examples
Basic usage:
let n = !(U256::MAX >> 2u32);
assert_eq!(n.leading_ones(), 2);
Sourcepub fn trailing_ones(self) -> u32
pub fn trailing_ones(self) -> u32
Returns the number of trailing ones in the binary representation of
self
.
§Examples
Basic usage:
let n = U256::new(0b1010111);
assert_eq!(n.trailing_ones(), 3);
Sourcepub fn rotate_left(self, n: u32) -> U256
pub fn rotate_left(self, n: u32) -> U256
Shifts the bits to the left by a specified amount, n
, wrapping the
truncated bits to the end of the resulting integer.
Please note this isn’t the same operation as the <<
shifting
operator!
§Examples
Basic usage:
let n = U256::from_words(
0x13f40000000000000000000000000000,
0x00000000000000000000000000004f76,
);
let m = U256::new(0x4f7613f4);
assert_eq!(n.rotate_left(16), m);
Sourcepub fn rotate_right(self, n: u32) -> U256
pub fn rotate_right(self, n: u32) -> U256
Shifts the bits to the right by a specified amount, n
, wrapping the
truncated bits to the beginning of the resulting integer.
Please note this isn’t the same operation as the >>
shifting operator!
§Examples
Basic usage:
let n = U256::new(0x4f7613f4);
let m = U256::from_words(
0x13f40000000000000000000000000000,
0x00000000000000000000000000004f76,
);
assert_eq!(n.rotate_right(16), m);
Sourcepub const fn swap_bytes(self) -> U256
pub const fn swap_bytes(self) -> U256
Reverses the byte order of the integer.
§Examples
Basic usage:
let n = U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
n.swap_bytes(),
U256::from_words(
0x1f1e1d1c_1b1a1918_17161514_13121110,
0x0f0e0d0c_0b0a0908_07060504_03020100,
),
);
Sourcepub const fn reverse_bits(self) -> U256
pub const fn reverse_bits(self) -> U256
Reverses the bit pattern of the integer.
§Examples
Basic usage:
let n = U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
n.reverse_bits(),
U256::from_words(
0xf878b838_d8589818_e868a828_c8488808,
0xf070b030_d0509010_e060a020_c0408000,
),
);
Sourcepub const fn from_be(x: U256) -> U256
pub const fn from_be(x: U256) -> U256
Converts an integer from big endian to the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
let n = U256::new(0x1A);
if cfg!(target_endian = "big") {
assert_eq!(U256::from_be(n), n);
} else {
assert_eq!(U256::from_be(n), n.swap_bytes());
}
Sourcepub const fn from_le(x: U256) -> U256
pub const fn from_le(x: U256) -> U256
Converts an integer from little endian to the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
let n = U256::new(0x1A);
if cfg!(target_endian = "little") {
assert_eq!(U256::from_le(n), n)
} else {
assert_eq!(U256::from_le(n), n.swap_bytes())
}
Sourcepub const fn to_be(self) -> U256
pub const fn to_be(self) -> U256
Converts self
to big endian from the target’s endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
§Examples
Basic usage:
let n = U256::new(0x1A);
if cfg!(target_endian = "big") {
assert_eq!(n.to_be(), n)
} else {
assert_eq!(n.to_be(), n.swap_bytes())
}
Sourcepub const fn to_le(self) -> U256
pub const fn to_le(self) -> U256
Converts self
to little endian from the target’s endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
§Examples
Basic usage:
let n = U256::new(0x1A);
if cfg!(target_endian = "little") {
assert_eq!(n.to_le(), n)
} else {
assert_eq!(n.to_le(), n.swap_bytes())
}
Sourcepub fn checked_add(self, rhs: U256) -> Option<U256>
pub fn checked_add(self, rhs: U256) -> Option<U256>
Checked integer addition. Computes self + rhs
, returning None
if
overflow occurred.
§Examples
Basic usage:
assert_eq!((U256::MAX - 2).checked_add(U256::new(1)), Some(U256::MAX - 1));
assert_eq!((U256::MAX - 2).checked_add(U256::new(3)), None);
Sourcepub fn checked_add_signed(self, rhs: I256) -> Option<U256>
pub fn checked_add_signed(self, rhs: I256) -> Option<U256>
Checked addition with a signed integer. Computes self + rhs
,
returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!(U256::new(1).checked_add_signed(I256::new(2)), Some(U256::new(3)));
assert_eq!(U256::new(1).checked_add_signed(I256::new(-2)), None);
assert_eq!((U256::MAX - 2).checked_add_signed(I256::new(3)), None);
Sourcepub fn checked_sub(self, rhs: U256) -> Option<U256>
pub fn checked_sub(self, rhs: U256) -> Option<U256>
Checked integer subtraction. Computes self - rhs
, returning None
if
overflow occurred.
§Examples
Basic usage:
assert_eq!(U256::new(1).checked_sub(U256::new(1)), Some(U256::ZERO));
assert_eq!(U256::new(0).checked_sub(U256::new(1)), None);
Sourcepub fn checked_mul(self, rhs: U256) -> Option<U256>
pub fn checked_mul(self, rhs: U256) -> Option<U256>
Checked integer multiplication. Computes self * rhs
, returning None
if overflow occurred.
§Examples
Basic usage:
assert_eq!(U256::new(5).checked_mul(U256::new(1)), Some(U256::new(5)));
assert_eq!(U256::MAX.checked_mul(U256::new(2)), None);
Sourcepub fn checked_div(self, rhs: U256) -> Option<U256>
pub fn checked_div(self, rhs: U256) -> Option<U256>
Checked integer division. Computes self / rhs
, returning None
if
rhs == 0
.
§Examples
Basic usage:
assert_eq!(U256::new(128).checked_div(U256::new(2)), Some(U256::new(64)));
assert_eq!(U256::new(1).checked_div(U256::new(0)), None);
Sourcepub fn checked_div_euclid(self, rhs: U256) -> Option<U256>
pub fn checked_div_euclid(self, rhs: U256) -> Option<U256>
Checked Euclidean division. Computes self.div_euclid(rhs)
, returning
None
if rhs == 0
.
§Examples
Basic usage:
assert_eq!(U256::new(128).checked_div_euclid(U256::new(2)), Some(U256::new(64)));
assert_eq!(U256::new(1).checked_div_euclid(U256::new(0)), None);
Sourcepub fn checked_rem(self, rhs: U256) -> Option<U256>
pub fn checked_rem(self, rhs: U256) -> Option<U256>
Checked integer remainder. Computes self % rhs
, returning None
if
rhs == 0
.
§Examples
Basic usage:
assert_eq!(U256::new(5).checked_rem(U256::new(2)), Some(U256::new(1)));
assert_eq!(U256::new(5).checked_rem(U256::new(0)), None);
Sourcepub fn checked_rem_euclid(self, rhs: U256) -> Option<U256>
pub fn checked_rem_euclid(self, rhs: U256) -> Option<U256>
Checked Euclidean modulo. Computes self.rem_euclid(rhs)
, returning
None
if rhs == 0
.
§Examples
Basic usage:
assert_eq!(U256::new(5).checked_rem_euclid(U256::new(2)), Some(U256::new(1)));
assert_eq!(U256::new(5).checked_rem_euclid(U256::new(0)), None);
Sourcepub fn checked_neg(self) -> Option<U256>
pub fn checked_neg(self) -> Option<U256>
Checked negation. Computes -self
, returning None
unless self == 0
.
Note that negating any positive integer will overflow.
§Examples
Basic usage:
assert_eq!(U256::ZERO.checked_neg(), Some(U256::ZERO));
assert_eq!(U256::new(1).checked_neg(), None);
Sourcepub fn checked_shl(self, rhs: u32) -> Option<U256>
pub fn checked_shl(self, rhs: u32) -> Option<U256>
Checked shift left. Computes self << rhs
, returning None
if rhs
is
larger than or equal to the number of bits in self
.
§Examples
Basic usage:
assert_eq!(U256::new(0x1).checked_shl(4), Some(U256::new(0x10)));
assert_eq!(U256::new(0x10).checked_shl(257), None);
Sourcepub fn checked_shr(self, rhs: u32) -> Option<U256>
pub fn checked_shr(self, rhs: u32) -> Option<U256>
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
§Examples
Basic usage:
assert_eq!(U256::new(0x10).checked_shr(4), Some(U256::new(0x1)));
assert_eq!(U256::new(0x10).checked_shr(257), None);
Sourcepub fn checked_pow(self, exp: u32) -> Option<U256>
pub fn checked_pow(self, exp: u32) -> Option<U256>
Checked exponentiation. Computes self.pow(exp)
, returning None
if
overflow occurred.
§Examples
Basic usage:
assert_eq!(U256::new(2).checked_pow(5), Some(U256::new(32)));
assert_eq!(U256::MAX.checked_pow(2), None);
Sourcepub fn saturating_add(self, rhs: U256) -> U256
pub fn saturating_add(self, rhs: U256) -> U256
Saturating integer addition. Computes self + rhs
, saturating at the
numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(U256::new(100).saturating_add(U256::new(1)), U256::new(101));
assert_eq!(U256::MAX.saturating_add(U256::new(127)), U256::MAX);
Sourcepub fn saturating_add_signed(self, rhs: I256) -> U256
pub fn saturating_add_signed(self, rhs: I256) -> U256
Saturating addition with a signed integer. Computes self + rhs
,
saturating at the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(U256::new(1).saturating_add_signed(I256::new(2)), U256::new(3));
assert_eq!(U256::new(1).saturating_add_signed(I256::new(-2)), U256::new(0));
assert_eq!((U256::MAX - 2).saturating_add_signed(I256::new(4)), U256::MAX);
Sourcepub fn saturating_sub(self, rhs: U256) -> U256
pub fn saturating_sub(self, rhs: U256) -> U256
Saturating integer subtraction. Computes self - rhs
, saturating at the
numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(U256::new(100).saturating_sub(U256::new(27)), U256::new(73));
assert_eq!(U256::new(13).saturating_sub(U256::new(127)), U256::new(0));
Sourcepub fn saturating_mul(self, rhs: U256) -> U256
pub fn saturating_mul(self, rhs: U256) -> U256
Saturating integer multiplication. Computes self * rhs
, saturating at
the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(U256::new(2).saturating_mul(U256::new(10)), U256::new(20));
assert_eq!((U256::MAX).saturating_mul(U256::new(10)), U256::MAX);
Sourcepub fn saturating_div(self, rhs: U256) -> U256
pub fn saturating_div(self, rhs: U256) -> U256
Sourcepub fn saturating_pow(self, exp: u32) -> U256
pub fn saturating_pow(self, exp: u32) -> U256
Saturating integer exponentiation. Computes self.pow(exp)
, saturating
at the numeric bounds instead of overflowing.
§Examples
Basic usage:
assert_eq!(U256::new(4).saturating_pow(3), U256::new(64));
assert_eq!(U256::MAX.saturating_pow(2), U256::MAX);
Sourcepub fn wrapping_add(self, rhs: U256) -> U256
pub fn wrapping_add(self, rhs: U256) -> U256
Wrapping (modular) addition. Computes self + rhs
, wrapping around at
the boundary of the type.
§Examples
Basic usage:
assert_eq!(U256::new(200).wrapping_add(U256::new(55)), U256::new(255));
assert_eq!(U256::new(200).wrapping_add(U256::MAX), U256::new(199));
Sourcepub fn wrapping_add_signed(self, rhs: I256) -> U256
pub fn wrapping_add_signed(self, rhs: I256) -> U256
Wrapping (modular) addition with a signed integer. Computes
self + rhs
, wrapping around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(U256::new(1).wrapping_add_signed(I256::new(2)), U256::new(3));
assert_eq!(U256::new(1).wrapping_add_signed(I256::new(-2)), U256::MAX);
assert_eq!((U256::MAX - 2).wrapping_add_signed(I256::new(4)), U256::new(1));
Sourcepub fn wrapping_sub(self, rhs: U256) -> U256
pub fn wrapping_sub(self, rhs: U256) -> U256
Wrapping (modular) subtraction. Computes self - rhs
, wrapping around
at the boundary of the type.
§Examples
Basic usage:
assert_eq!(U256::new(100).wrapping_sub(U256::new(100)), U256::new(0));
assert_eq!(U256::new(100).wrapping_sub(U256::MAX), U256::new(101));
Sourcepub fn wrapping_mul(self, rhs: U256) -> U256
pub fn wrapping_mul(self, rhs: U256) -> U256
Wrapping (modular) multiplication. Computes self * rhs
, wrapping
around at the boundary of the type.
§Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u8
is used here.
assert_eq!(U256::new(10).wrapping_mul(U256::new(12)), U256::new(120));
assert_eq!(U256::MAX.wrapping_mul(U256::new(2)), U256::MAX - 1);
Sourcepub fn wrapping_div(self, rhs: U256) -> U256
pub fn wrapping_div(self, rhs: U256) -> U256
Wrapping (modular) division. Computes self / rhs
. Wrapped division on
unsigned types is just normal division. There’s no way wrapping could
ever happen. This function exists, so that all operations are accounted
for in the wrapping operations.
§Examples
Basic usage:
assert_eq!(U256::new(100).wrapping_div(U256::new(10)), U256::new(10));
Sourcepub fn wrapping_div_euclid(self, rhs: U256) -> U256
pub fn wrapping_div_euclid(self, rhs: U256) -> U256
Wrapping Euclidean division. Computes self.div_euclid(rhs)
. Wrapped
division on unsigned types is just normal division. There’s no way
wrapping could ever happen. This function exists, so that all operations
are accounted for in the wrapping operations. Since, for the positive
integers, all common definitions of division are equal, this is exactly
equal to self.wrapping_div(rhs)
.
§Examples
Basic usage:
assert_eq!(U256::new(100).wrapping_div_euclid(U256::new(10)), U256::new(10));
Sourcepub fn wrapping_rem(self, rhs: U256) -> U256
pub fn wrapping_rem(self, rhs: U256) -> U256
Wrapping (modular) remainder. Computes self % rhs
. Wrapped remainder
calculation on unsigned types is just the regular remainder calculation.
There’s no way wrapping could ever happen. This function exists, so that
all operations are accounted for in the wrapping operations.
§Examples
Basic usage:
assert_eq!(U256::new(100).wrapping_rem(U256::new(10)), U256::new(0));
Sourcepub fn wrapping_rem_euclid(self, rhs: U256) -> U256
pub fn wrapping_rem_euclid(self, rhs: U256) -> U256
Wrapping Euclidean modulo. Computes self.rem_euclid(rhs)
. Wrapped
modulo calculation on unsigned types is just the regular remainder
calculation. There’s no way wrapping could ever happen. This function
exists, so that all operations are accounted for in the wrapping
operations. Since, for the positive integers, all common definitions of
division are equal, this is exactly equal to self.wrapping_rem(rhs)
.
§Examples
Basic usage:
assert_eq!(U256::new(100).wrapping_rem_euclid(U256::new(10)), U256::new(0));
Sourcepub fn wrapping_neg(self) -> U256
pub fn wrapping_neg(self) -> U256
Wrapping (modular) negation. Computes -self
, wrapping around at the
boundary of the type.
Since unsigned types do not have negative equivalents all applications
of this function will wrap (except for -0
). For values smaller than
the corresponding signed type’s maximum the result is the same as
casting the corresponding signed value. Any larger values are equivalent
to MAX + 1 - (val - MAX - 1)
where MAX
is the corresponding signed
type’s maximum.
§Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why i8
is used here.
assert_eq!(U256::new(100).wrapping_neg(), (-100i128).as_u256());
assert_eq!(
U256::from_words(i128::MIN as _, 0).wrapping_neg(),
U256::from_words(i128::MIN as _, 0),
);
Sourcepub fn wrapping_shl(self, rhs: u32) -> U256
pub fn wrapping_shl(self, rhs: u32) -> U256
Panic-free bitwise shift-left; yields self << mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to
exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the RHS of a wrapping
shift-left is restricted to the range of the type, rather than the bits
shifted out of the LHS being returned to the other end. The primitive
integer types all implement a rotate_left
function, which maybe what
you want instead.
§Examples
Basic usage:
assert_eq!(U256::new(1).wrapping_shl(7), U256::new(128));
assert_eq!(U256::new(1).wrapping_shl(128), U256::from_words(1, 0));
assert_eq!(U256::new(1).wrapping_shl(256), U256::new(1));
Sourcepub fn wrapping_shr(self, rhs: u32) -> U256
pub fn wrapping_shr(self, rhs: u32) -> U256
Panic-free bitwise shift-right; yields self >> mask(rhs)
, where mask
removes any high-order bits of rhs
that would cause the shift to
exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the RHS of a
wrapping shift-right is restricted to the range of the type, rather than
the bits shifted out of the LHS being returned to the other end. The
primitive integer types all implement a rotate_right
function, which
may be what you want instead.
§Examples
Basic usage:
assert_eq!(U256::new(128).wrapping_shr(7), U256::new(1));
assert_eq!(U256::from_words(128, 0).wrapping_shr(128), U256::new(128));
assert_eq!(U256::new(128).wrapping_shr(256), U256::new(128));
Sourcepub fn wrapping_pow(self, exp: u32) -> U256
pub fn wrapping_pow(self, exp: u32) -> U256
Wrapping (modular) exponentiation. Computes self.pow(exp)
, wrapping
around at the boundary of the type.
§Examples
Basic usage:
assert_eq!(U256::new(3).wrapping_pow(5), U256::new(243));
assert_eq!(
U256::new(1337).wrapping_pow(42),
U256::from_words(
45367329835866155830012179193722278514,
159264946433345088039815329994094210673,
),
);
Sourcepub fn overflowing_add(self, rhs: U256) -> (U256, bool)
pub fn overflowing_add(self, rhs: U256) -> (U256, bool)
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_add(U256::new(2)), (U256::new(7), false));
assert_eq!(U256::MAX.overflowing_add(U256::new(1)), (U256::new(0), true));
Sourcepub fn overflowing_add_signed(self, rhs: I256) -> (U256, bool)
pub fn overflowing_add_signed(self, rhs: I256) -> (U256, bool)
Calculates self
+ rhs
with a signed rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
assert_eq!(U256::new(1).overflowing_add_signed(I256::new(2)), (U256::new(3), false));
assert_eq!(U256::new(1).overflowing_add_signed(I256::new(-2)), (U256::MAX, true));
assert_eq!((U256::MAX - 2).overflowing_add_signed(I256::new(4)), (U256::new(1), true));
Sourcepub fn overflowing_sub(self, rhs: U256) -> (U256, bool)
pub fn overflowing_sub(self, rhs: U256) -> (U256, bool)
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_sub(U256::new(2)), (U256::new(3), false));
assert_eq!(U256::new(0).overflowing_sub(U256::new(1)), (U256::MAX, true));
Sourcepub fn abs_diff(self, other: U256) -> U256
pub fn abs_diff(self, other: U256) -> U256
Computes the absolute difference between self
and other
.
§Examples
Basic usage:
assert_eq!(U256::new(100).abs_diff(U256::new(80)), 20);
assert_eq!(U256::new(100).abs_diff(U256::new(110)), 10);
Sourcepub fn overflowing_mul(self, rhs: U256) -> (U256, bool)
pub fn overflowing_mul(self, rhs: U256) -> (U256, bool)
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
§Examples
Basic usage:
Please note that this example is shared between integer types.
Which explains why u32
is used here.
assert_eq!(U256::new(5).overflowing_mul(U256::new(2)), (U256::new(10), false));
assert_eq!(
U256::MAX.overflowing_mul(U256::new(2)),
(U256::MAX - 1, true),
);
Sourcepub fn overflowing_div(self, rhs: U256) -> (U256, bool)
pub fn overflowing_div(self, rhs: U256) -> (U256, bool)
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether
an arithmetic overflow would occur. Note that for unsigned integers
overflow never occurs, so the second value is always false
.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_div(U256::new(2)), (U256::new(2), false));
Sourcepub fn overflowing_div_euclid(self, rhs: U256) -> (U256, bool)
pub fn overflowing_div_euclid(self, rhs: U256) -> (U256, bool)
Calculates the quotient of Euclidean division self.div_euclid(rhs)
.
Returns a tuple of the divisor along with a boolean indicating whether
an arithmetic overflow would occur. Note that for unsigned integers
overflow never occurs, so the second value is always false
. Since,
for the positive integers, all common definitions of division are equal,
this is exactly equal to self.overflowing_div(rhs)
.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_div_euclid(U256::new(2)), (U256::new(2), false));
Sourcepub fn overflowing_rem(self, rhs: U256) -> (U256, bool)
pub fn overflowing_rem(self, rhs: U256) -> (U256, bool)
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is always
false
.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_rem(U256::new(2)), (U256::new(1), false));
Sourcepub fn overflowing_rem_euclid(self, rhs: U256) -> (U256, bool)
pub fn overflowing_rem_euclid(self, rhs: U256) -> (U256, bool)
Calculates the remainder self.rem_euclid(rhs)
as if by Euclidean
division.
Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is always
false
. Since, for the positive integers, all common definitions of
division are equal, this operation is exactly equal to
self.overflowing_rem(rhs)
.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage
assert_eq!(U256::new(5).overflowing_rem_euclid(U256::new(2)), (U256::new(1), false));
Sourcepub fn overflowing_neg(self) -> (U256, bool)
pub fn overflowing_neg(self) -> (U256, bool)
Negates self in an overflowing fashion.
Returns !self + 1
using wrapping operations to return the value that
represents the negation of this unsigned value. Note that for positive
unsigned values overflow always occurs, but negating 0 does not
overflow.
§Examples
Basic usage
assert_eq!(U256::new(0).overflowing_neg(), (U256::new(0), false));
assert_eq!(U256::new(2).overflowing_neg(), ((-2i32).as_u256(), true));
Sourcepub fn overflowing_shl(self, rhs: u32) -> (U256, bool)
pub fn overflowing_shl(self, rhs: u32) -> (U256, bool)
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
§Examples
Basic usage
assert_eq!(U256::new(0x1).overflowing_shl(4), (U256::new(0x10), false));
assert_eq!(U256::new(0x1).overflowing_shl(260), (U256::new(0x10), true));
Sourcepub fn overflowing_shr(self, rhs: u32) -> (U256, bool)
pub fn overflowing_shr(self, rhs: u32) -> (U256, bool)
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
§Examples
Basic usage
assert_eq!(U256::new(0x10).overflowing_shr(4), (U256::new(0x1), false));
assert_eq!(U256::new(0x10).overflowing_shr(260), (U256::new(0x1), true));
Sourcepub fn overflowing_pow(self, exp: u32) -> (U256, bool)
pub fn overflowing_pow(self, exp: u32) -> (U256, bool)
Raises self to the power of exp
, using exponentiation by squaring.
Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.
§Examples
Basic usage:
assert_eq!(U256::new(3).overflowing_pow(5), (U256::new(243), false));
assert_eq!(
U256::new(1337).overflowing_pow(42),
(
U256::from_words(
45367329835866155830012179193722278514,
159264946433345088039815329994094210673,
),
true,
)
);
Sourcepub fn pow(self, exp: u32) -> U256
pub fn pow(self, exp: u32) -> U256
Raises self to the power of exp
, using exponentiation by squaring.
§Examples
Basic usage:
assert_eq!(U256::new(2).pow(5), U256::new(32));
Sourcepub fn div_euclid(self, rhs: U256) -> U256
pub fn div_euclid(self, rhs: U256) -> U256
Sourcepub fn rem_euclid(self, rhs: U256) -> U256
pub fn rem_euclid(self, rhs: U256) -> U256
Calculates the least remainder of self (mod rhs)
.
Since, for the positive integers, all common definitions of division are
equal, this is exactly equal to self % rhs
.
§Panics
This function will panic if rhs
is 0.
§Examples
Basic usage:
assert_eq!(U256::new(7).rem_euclid(U256::new(4)), U256::new(3));
Sourcepub fn is_power_of_two(self) -> bool
pub fn is_power_of_two(self) -> bool
Returns true
if and only if self == 2^k
for some k
.
§Examples
Basic usage:
assert!(U256::new(16).is_power_of_two());
assert!(!U256::new(10).is_power_of_two());
Sourcepub fn next_power_of_two(self) -> U256
pub fn next_power_of_two(self) -> U256
Returns the smallest power of two greater than or equal to self
.
When return value overflows (i.e., self > (1 << (N-1))
for type uN
),
it panics in debug mode and return value is wrapped to 0 in release mode
(the only situation in which method can return 0).
§Examples
Basic usage:
assert_eq!(U256::new(2).next_power_of_two(), U256::new(2));
assert_eq!(U256::new(3).next_power_of_two(), U256::new(4));
Sourcepub fn checked_next_power_of_two(self) -> Option<U256>
pub fn checked_next_power_of_two(self) -> Option<U256>
Returns the smallest power of two greater than or equal to n
. If the
next power of two is greater than the type’s maximum value, None
is
returned, otherwise the power of two is wrapped in Some
.
§Examples
Basic usage:
assert_eq!(U256::new(2).checked_next_power_of_two(), Some(U256::new(2)));
assert_eq!(U256::new(3).checked_next_power_of_two(), Some(U256::new(4)));
assert_eq!(U256::MAX.checked_next_power_of_two(), None);
Sourcepub fn to_be_bytes(self) -> [u8; 32]
pub fn to_be_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in big endian (network) byte order.
§Examples
let bytes = U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_be_bytes(),
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
],
);
Sourcepub fn to_le_bytes(self) -> [u8; 32]
pub fn to_le_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in little endian byte order.
§Examples
let bytes = U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_le_bytes(),
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
],
);
Sourcepub fn to_ne_bytes(self) -> [u8; 32]
pub fn to_ne_bytes(self) -> [u8; 32]
Return the memory representation of this integer as a byte array in native byte order.
As the target platform’s native endianness is used, portable code should
use to_be_bytes
or to_le_bytes
, as appropriate, instead.
§Examples
let bytes = U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
);
assert_eq!(
bytes.to_ne_bytes(),
if cfg!(target_endian = "big") {
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]
} else {
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]
}
);
Sourcepub fn from_be_bytes(bytes: [u8; 32]) -> U256
pub fn from_be_bytes(bytes: [u8; 32]) -> U256
Create an integer value from its representation as a byte array in big endian.
§Examples
let value = U256::from_be_bytes([
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]);
assert_eq!(
value,
U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto;
fn read_be_u256(input: &mut &[u8]) -> U256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
*input = rest;
U256::from_be_bytes(int_bytes.try_into().unwrap())
}
Sourcepub fn from_le_bytes(bytes: [u8; 32]) -> U256
pub fn from_le_bytes(bytes: [u8; 32]) -> U256
Create an integer value from its representation as a byte array in little endian.
§Examples
let value = U256::from_le_bytes([
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]);
assert_eq!(
value,
U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto;
fn read_be_u256(input: &mut &[u8]) -> U256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
*input = rest;
U256::from_le_bytes(int_bytes.try_into().unwrap())
}
Sourcepub fn from_ne_bytes(bytes: [u8; 32]) -> U256
pub fn from_ne_bytes(bytes: [u8; 32]) -> U256
Create an integer value from its memory representation as a byte array in native endianness.
As the target platform’s native endianness is used, portable code likely
wants to use from_be_bytes
or from_le_bytes
, as appropriate
instead.
§Examples
let value = U256::from_ne_bytes(if cfg!(target_endian = "big") {
[
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
]
} else {
[
0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10,
0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
]
});
assert_eq!(
value,
U256::from_words(
0x00010203_04050607_08090a0b_0c0d0e0f,
0x10111213_14151617_18191a1b_1c1d1e1f,
),
);
When starting from a slice rather than an array, fallible conversion APIs can be used:
use std::convert::TryInto;
fn read_be_u256(input: &mut &[u8]) -> U256 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<U256>());
*input = rest;
U256::from_ne_bytes(int_bytes.try_into().unwrap())
}
Source§impl U256
impl U256
Sourcepub const fn new(value: u128) -> U256
pub const fn new(value: u128) -> U256
Creates a new 256-bit integer value from a primitive u128
integer.
Sourcepub const fn from_words(hi: u128, lo: u128) -> U256
pub const fn from_words(hi: u128, lo: u128) -> U256
Creates a new 256-bit integer value from high and low words.
Sourcepub const fn into_words(self) -> (u128, u128)
pub const fn into_words(self) -> (u128, u128)
Splits a 256-bit integer into high and low words.
Sourcepub fn low_mut(&mut self) -> &mut u128
pub fn low_mut(&mut self) -> &mut u128
Get the low 128-bit word for this unsigned integer as a mutable reference.
Sourcepub fn high_mut(&mut self) -> &mut u128
pub fn high_mut(&mut self) -> &mut u128
Get the high 128-bit word for this unsigned integer as a mutable reference.
Sourcepub fn from_str_hex(src: &str) -> Result<U256, ParseIntError>
pub fn from_str_hex(src: &str) -> Result<U256, ParseIntError>
Converts a prefixed string slice in base 16 to an integer.
The string is expected to be an optional +
sign followed by the 0x
prefix and finally the digits. Leading and trailing whitespace represent
an error.
§Examples
Basic usage:
assert_eq!(U256::from_str_hex("0x2A"), Ok(U256::new(42)));
Sourcepub fn from_str_prefixed(src: &str) -> Result<U256, ParseIntError>
pub fn from_str_prefixed(src: &str) -> Result<U256, ParseIntError>
Converts a prefixed string slice in a base determined by the prefix to an integer.
The string is expected to be an optional +
sign followed by the one of
the supported prefixes and finally the digits. Leading and trailing
whitespace represent an error. The base is determined based on the
prefix:
0b
: base2
0o
: base8
0x
: base16
- no prefix: base
10
§Examples
Basic usage:
assert_eq!(U256::from_str_prefixed("0b101"), Ok(U256::new(0b101)));
assert_eq!(U256::from_str_prefixed("0o17"), Ok(U256::new(0o17)));
assert_eq!(U256::from_str_prefixed("0xa"), Ok(U256::new(0xa)));
assert_eq!(U256::from_str_prefixed("42"), Ok(U256::new(42)));
Trait Implementations§
Source§impl AddAssign<&U256> for U256
impl AddAssign<&U256> for U256
Source§fn add_assign(&mut self, rhs: &U256)
fn add_assign(&mut self, rhs: &U256)
+=
operation. Read moreSource§impl AddAssign<&u128> for U256
impl AddAssign<&u128> for U256
Source§fn add_assign(&mut self, rhs: &u128)
fn add_assign(&mut self, rhs: &u128)
+=
operation. Read moreSource§impl AddAssign<u128> for U256
impl AddAssign<u128> for U256
Source§fn add_assign(&mut self, rhs: u128)
fn add_assign(&mut self, rhs: u128)
+=
operation. Read moreSource§impl AddAssign for U256
impl AddAssign for U256
Source§fn add_assign(&mut self, rhs: U256)
fn add_assign(&mut self, rhs: U256)
+=
operation. Read moreSource§impl BitAndAssign<&U256> for U256
impl BitAndAssign<&U256> for U256
Source§fn bitand_assign(&mut self, rhs: &U256)
fn bitand_assign(&mut self, rhs: &U256)
&=
operation. Read moreSource§impl BitAndAssign<&u128> for U256
impl BitAndAssign<&u128> for U256
Source§fn bitand_assign(&mut self, rhs: &u128)
fn bitand_assign(&mut self, rhs: &u128)
&=
operation. Read moreSource§impl BitAndAssign<u128> for U256
impl BitAndAssign<u128> for U256
Source§fn bitand_assign(&mut self, rhs: u128)
fn bitand_assign(&mut self, rhs: u128)
&=
operation. Read moreSource§impl BitAndAssign for U256
impl BitAndAssign for U256
Source§fn bitand_assign(&mut self, rhs: U256)
fn bitand_assign(&mut self, rhs: U256)
&=
operation. Read moreSource§impl BitOrAssign<&U256> for U256
impl BitOrAssign<&U256> for U256
Source§fn bitor_assign(&mut self, rhs: &U256)
fn bitor_assign(&mut self, rhs: &U256)
|=
operation. Read moreSource§impl BitOrAssign<&u128> for U256
impl BitOrAssign<&u128> for U256
Source§fn bitor_assign(&mut self, rhs: &u128)
fn bitor_assign(&mut self, rhs: &u128)
|=
operation. Read moreSource§impl BitOrAssign<u128> for U256
impl BitOrAssign<u128> for U256
Source§fn bitor_assign(&mut self, rhs: u128)
fn bitor_assign(&mut self, rhs: u128)
|=
operation. Read moreSource§impl BitOrAssign for U256
impl BitOrAssign for U256
Source§fn bitor_assign(&mut self, rhs: U256)
fn bitor_assign(&mut self, rhs: U256)
|=
operation. Read moreSource§impl BitXorAssign<&U256> for U256
impl BitXorAssign<&U256> for U256
Source§fn bitxor_assign(&mut self, rhs: &U256)
fn bitxor_assign(&mut self, rhs: &U256)
^=
operation. Read moreSource§impl BitXorAssign<&u128> for U256
impl BitXorAssign<&u128> for U256
Source§fn bitxor_assign(&mut self, rhs: &u128)
fn bitxor_assign(&mut self, rhs: &u128)
^=
operation. Read moreSource§impl BitXorAssign<u128> for U256
impl BitXorAssign<u128> for U256
Source§fn bitxor_assign(&mut self, rhs: u128)
fn bitxor_assign(&mut self, rhs: u128)
^=
operation. Read moreSource§impl BitXorAssign for U256
impl BitXorAssign for U256
Source§fn bitxor_assign(&mut self, rhs: U256)
fn bitxor_assign(&mut self, rhs: U256)
^=
operation. Read moreSource§impl DivAssign<&U256> for U256
impl DivAssign<&U256> for U256
Source§fn div_assign(&mut self, rhs: &U256)
fn div_assign(&mut self, rhs: &U256)
/=
operation. Read moreSource§impl DivAssign<&u128> for U256
impl DivAssign<&u128> for U256
Source§fn div_assign(&mut self, rhs: &u128)
fn div_assign(&mut self, rhs: &u128)
/=
operation. Read moreSource§impl DivAssign<u128> for U256
impl DivAssign<u128> for U256
Source§fn div_assign(&mut self, rhs: u128)
fn div_assign(&mut self, rhs: u128)
/=
operation. Read moreSource§impl DivAssign for U256
impl DivAssign for U256
Source§fn div_assign(&mut self, rhs: U256)
fn div_assign(&mut self, rhs: U256)
/=
operation. Read moreSource§impl MulAssign<&U256> for U256
impl MulAssign<&U256> for U256
Source§fn mul_assign(&mut self, rhs: &U256)
fn mul_assign(&mut self, rhs: &U256)
*=
operation. Read moreSource§impl MulAssign<&u128> for U256
impl MulAssign<&u128> for U256
Source§fn mul_assign(&mut self, rhs: &u128)
fn mul_assign(&mut self, rhs: &u128)
*=
operation. Read moreSource§impl MulAssign<u128> for U256
impl MulAssign<u128> for U256
Source§fn mul_assign(&mut self, rhs: u128)
fn mul_assign(&mut self, rhs: u128)
*=
operation. Read moreSource§impl MulAssign for U256
impl MulAssign for U256
Source§fn mul_assign(&mut self, rhs: U256)
fn mul_assign(&mut self, rhs: U256)
*=
operation. Read moreSource§impl Ord for U256
impl Ord for U256
Source§impl PartialOrd<u128> for U256
impl PartialOrd<u128> for U256
Source§impl PartialOrd for U256
impl PartialOrd for U256
Source§impl RemAssign<&U256> for U256
impl RemAssign<&U256> for U256
Source§fn rem_assign(&mut self, rhs: &U256)
fn rem_assign(&mut self, rhs: &U256)
%=
operation. Read moreSource§impl RemAssign<&u128> for U256
impl RemAssign<&u128> for U256
Source§fn rem_assign(&mut self, rhs: &u128)
fn rem_assign(&mut self, rhs: &u128)
%=
operation. Read moreSource§impl RemAssign<u128> for U256
impl RemAssign<u128> for U256
Source§fn rem_assign(&mut self, rhs: u128)
fn rem_assign(&mut self, rhs: u128)
%=
operation. Read moreSource§impl RemAssign for U256
impl RemAssign for U256
Source§fn rem_assign(&mut self, rhs: U256)
fn rem_assign(&mut self, rhs: U256)
%=
operation. Read moreSource§impl ShlAssign<&I256> for U256
impl ShlAssign<&I256> for U256
Source§fn shl_assign(&mut self, rhs: &I256)
fn shl_assign(&mut self, rhs: &I256)
<<=
operation. Read moreSource§impl ShlAssign<&U256> for I256
impl ShlAssign<&U256> for I256
Source§fn shl_assign(&mut self, rhs: &U256)
fn shl_assign(&mut self, rhs: &U256)
<<=
operation. Read moreSource§impl ShlAssign<&U256> for U256
impl ShlAssign<&U256> for U256
Source§fn shl_assign(&mut self, rhs: &U256)
fn shl_assign(&mut self, rhs: &U256)
<<=
operation. Read moreSource§impl ShlAssign<&i128> for U256
impl ShlAssign<&i128> for U256
Source§fn shl_assign(&mut self, rhs: &i128)
fn shl_assign(&mut self, rhs: &i128)
<<=
operation. Read moreSource§impl ShlAssign<&i16> for U256
impl ShlAssign<&i16> for U256
Source§fn shl_assign(&mut self, rhs: &i16)
fn shl_assign(&mut self, rhs: &i16)
<<=
operation. Read moreSource§impl ShlAssign<&i32> for U256
impl ShlAssign<&i32> for U256
Source§fn shl_assign(&mut self, rhs: &i32)
fn shl_assign(&mut self, rhs: &i32)
<<=
operation. Read moreSource§impl ShlAssign<&i64> for U256
impl ShlAssign<&i64> for U256
Source§fn shl_assign(&mut self, rhs: &i64)
fn shl_assign(&mut self, rhs: &i64)
<<=
operation. Read moreSource§impl ShlAssign<&i8> for U256
impl ShlAssign<&i8> for U256
Source§fn shl_assign(&mut self, rhs: &i8)
fn shl_assign(&mut self, rhs: &i8)
<<=
operation. Read moreSource§impl ShlAssign<&isize> for U256
impl ShlAssign<&isize> for U256
Source§fn shl_assign(&mut self, rhs: &isize)
fn shl_assign(&mut self, rhs: &isize)
<<=
operation. Read moreSource§impl ShlAssign<&u128> for U256
impl ShlAssign<&u128> for U256
Source§fn shl_assign(&mut self, rhs: &u128)
fn shl_assign(&mut self, rhs: &u128)
<<=
operation. Read moreSource§impl ShlAssign<&u16> for U256
impl ShlAssign<&u16> for U256
Source§fn shl_assign(&mut self, rhs: &u16)
fn shl_assign(&mut self, rhs: &u16)
<<=
operation. Read moreSource§impl ShlAssign<&u32> for U256
impl ShlAssign<&u32> for U256
Source§fn shl_assign(&mut self, rhs: &u32)
fn shl_assign(&mut self, rhs: &u32)
<<=
operation. Read moreSource§impl ShlAssign<&u64> for U256
impl ShlAssign<&u64> for U256
Source§fn shl_assign(&mut self, rhs: &u64)
fn shl_assign(&mut self, rhs: &u64)
<<=
operation. Read moreSource§impl ShlAssign<&u8> for U256
impl ShlAssign<&u8> for U256
Source§fn shl_assign(&mut self, rhs: &u8)
fn shl_assign(&mut self, rhs: &u8)
<<=
operation. Read moreSource§impl ShlAssign<&usize> for U256
impl ShlAssign<&usize> for U256
Source§fn shl_assign(&mut self, rhs: &usize)
fn shl_assign(&mut self, rhs: &usize)
<<=
operation. Read moreSource§impl ShlAssign<I256> for U256
impl ShlAssign<I256> for U256
Source§fn shl_assign(&mut self, rhs: I256)
fn shl_assign(&mut self, rhs: I256)
<<=
operation. Read moreSource§impl ShlAssign<U256> for I256
impl ShlAssign<U256> for I256
Source§fn shl_assign(&mut self, rhs: U256)
fn shl_assign(&mut self, rhs: U256)
<<=
operation. Read moreSource§impl ShlAssign<i128> for U256
impl ShlAssign<i128> for U256
Source§fn shl_assign(&mut self, rhs: i128)
fn shl_assign(&mut self, rhs: i128)
<<=
operation. Read moreSource§impl ShlAssign<i16> for U256
impl ShlAssign<i16> for U256
Source§fn shl_assign(&mut self, rhs: i16)
fn shl_assign(&mut self, rhs: i16)
<<=
operation. Read moreSource§impl ShlAssign<i32> for U256
impl ShlAssign<i32> for U256
Source§fn shl_assign(&mut self, rhs: i32)
fn shl_assign(&mut self, rhs: i32)
<<=
operation. Read moreSource§impl ShlAssign<i64> for U256
impl ShlAssign<i64> for U256
Source§fn shl_assign(&mut self, rhs: i64)
fn shl_assign(&mut self, rhs: i64)
<<=
operation. Read moreSource§impl ShlAssign<i8> for U256
impl ShlAssign<i8> for U256
Source§fn shl_assign(&mut self, rhs: i8)
fn shl_assign(&mut self, rhs: i8)
<<=
operation. Read moreSource§impl ShlAssign<isize> for U256
impl ShlAssign<isize> for U256
Source§fn shl_assign(&mut self, rhs: isize)
fn shl_assign(&mut self, rhs: isize)
<<=
operation. Read moreSource§impl ShlAssign<u128> for U256
impl ShlAssign<u128> for U256
Source§fn shl_assign(&mut self, rhs: u128)
fn shl_assign(&mut self, rhs: u128)
<<=
operation. Read moreSource§impl ShlAssign<u16> for U256
impl ShlAssign<u16> for U256
Source§fn shl_assign(&mut self, rhs: u16)
fn shl_assign(&mut self, rhs: u16)
<<=
operation. Read moreSource§impl ShlAssign<u32> for U256
impl ShlAssign<u32> for U256
Source§fn shl_assign(&mut self, rhs: u32)
fn shl_assign(&mut self, rhs: u32)
<<=
operation. Read moreSource§impl ShlAssign<u64> for U256
impl ShlAssign<u64> for U256
Source§fn shl_assign(&mut self, rhs: u64)
fn shl_assign(&mut self, rhs: u64)
<<=
operation. Read moreSource§impl ShlAssign<u8> for U256
impl ShlAssign<u8> for U256
Source§fn shl_assign(&mut self, rhs: u8)
fn shl_assign(&mut self, rhs: u8)
<<=
operation. Read moreSource§impl ShlAssign<usize> for U256
impl ShlAssign<usize> for U256
Source§fn shl_assign(&mut self, rhs: usize)
fn shl_assign(&mut self, rhs: usize)
<<=
operation. Read moreSource§impl ShlAssign for U256
impl ShlAssign for U256
Source§fn shl_assign(&mut self, rhs: U256)
fn shl_assign(&mut self, rhs: U256)
<<=
operation. Read moreSource§impl ShrAssign<&I256> for U256
impl ShrAssign<&I256> for U256
Source§fn shr_assign(&mut self, rhs: &I256)
fn shr_assign(&mut self, rhs: &I256)
>>=
operation. Read moreSource§impl ShrAssign<&U256> for I256
impl ShrAssign<&U256> for I256
Source§fn shr_assign(&mut self, rhs: &U256)
fn shr_assign(&mut self, rhs: &U256)
>>=
operation. Read moreSource§impl ShrAssign<&U256> for U256
impl ShrAssign<&U256> for U256
Source§fn shr_assign(&mut self, rhs: &U256)
fn shr_assign(&mut self, rhs: &U256)
>>=
operation. Read moreSource§impl ShrAssign<&i128> for U256
impl ShrAssign<&i128> for U256
Source§fn shr_assign(&mut self, rhs: &i128)
fn shr_assign(&mut self, rhs: &i128)
>>=
operation. Read moreSource§impl ShrAssign<&i16> for U256
impl ShrAssign<&i16> for U256
Source§fn shr_assign(&mut self, rhs: &i16)
fn shr_assign(&mut self, rhs: &i16)
>>=
operation. Read moreSource§impl ShrAssign<&i32> for U256
impl ShrAssign<&i32> for U256
Source§fn shr_assign(&mut self, rhs: &i32)
fn shr_assign(&mut self, rhs: &i32)
>>=
operation. Read moreSource§impl ShrAssign<&i64> for U256
impl ShrAssign<&i64> for U256
Source§fn shr_assign(&mut self, rhs: &i64)
fn shr_assign(&mut self, rhs: &i64)
>>=
operation. Read moreSource§impl ShrAssign<&i8> for U256
impl ShrAssign<&i8> for U256
Source§fn shr_assign(&mut self, rhs: &i8)
fn shr_assign(&mut self, rhs: &i8)
>>=
operation. Read moreSource§impl ShrAssign<&isize> for U256
impl ShrAssign<&isize> for U256
Source§fn shr_assign(&mut self, rhs: &isize)
fn shr_assign(&mut self, rhs: &isize)
>>=
operation. Read moreSource§impl ShrAssign<&u128> for U256
impl ShrAssign<&u128> for U256
Source§fn shr_assign(&mut self, rhs: &u128)
fn shr_assign(&mut self, rhs: &u128)
>>=
operation. Read moreSource§impl ShrAssign<&u16> for U256
impl ShrAssign<&u16> for U256
Source§fn shr_assign(&mut self, rhs: &u16)
fn shr_assign(&mut self, rhs: &u16)
>>=
operation. Read moreSource§impl ShrAssign<&u32> for U256
impl ShrAssign<&u32> for U256
Source§fn shr_assign(&mut self, rhs: &u32)
fn shr_assign(&mut self, rhs: &u32)
>>=
operation. Read moreSource§impl ShrAssign<&u64> for U256
impl ShrAssign<&u64> for U256
Source§fn shr_assign(&mut self, rhs: &u64)
fn shr_assign(&mut self, rhs: &u64)
>>=
operation. Read moreSource§impl ShrAssign<&u8> for U256
impl ShrAssign<&u8> for U256
Source§fn shr_assign(&mut self, rhs: &u8)
fn shr_assign(&mut self, rhs: &u8)
>>=
operation. Read moreSource§impl ShrAssign<&usize> for U256
impl ShrAssign<&usize> for U256
Source§fn shr_assign(&mut self, rhs: &usize)
fn shr_assign(&mut self, rhs: &usize)
>>=
operation. Read moreSource§impl ShrAssign<I256> for U256
impl ShrAssign<I256> for U256
Source§fn shr_assign(&mut self, rhs: I256)
fn shr_assign(&mut self, rhs: I256)
>>=
operation. Read moreSource§impl ShrAssign<U256> for I256
impl ShrAssign<U256> for I256
Source§fn shr_assign(&mut self, rhs: U256)
fn shr_assign(&mut self, rhs: U256)
>>=
operation. Read moreSource§impl ShrAssign<i128> for U256
impl ShrAssign<i128> for U256
Source§fn shr_assign(&mut self, rhs: i128)
fn shr_assign(&mut self, rhs: i128)
>>=
operation. Read moreSource§impl ShrAssign<i16> for U256
impl ShrAssign<i16> for U256
Source§fn shr_assign(&mut self, rhs: i16)
fn shr_assign(&mut self, rhs: i16)
>>=
operation. Read moreSource§impl ShrAssign<i32> for U256
impl ShrAssign<i32> for U256
Source§fn shr_assign(&mut self, rhs: i32)
fn shr_assign(&mut self, rhs: i32)
>>=
operation. Read moreSource§impl ShrAssign<i64> for U256
impl ShrAssign<i64> for U256
Source§fn shr_assign(&mut self, rhs: i64)
fn shr_assign(&mut self, rhs: i64)
>>=
operation. Read moreSource§impl ShrAssign<i8> for U256
impl ShrAssign<i8> for U256
Source§fn shr_assign(&mut self, rhs: i8)
fn shr_assign(&mut self, rhs: i8)
>>=
operation. Read moreSource§impl ShrAssign<isize> for U256
impl ShrAssign<isize> for U256
Source§fn shr_assign(&mut self, rhs: isize)
fn shr_assign(&mut self, rhs: isize)
>>=
operation. Read moreSource§impl ShrAssign<u128> for U256
impl ShrAssign<u128> for U256
Source§fn shr_assign(&mut self, rhs: u128)
fn shr_assign(&mut self, rhs: u128)
>>=
operation. Read moreSource§impl ShrAssign<u16> for U256
impl ShrAssign<u16> for U256
Source§fn shr_assign(&mut self, rhs: u16)
fn shr_assign(&mut self, rhs: u16)
>>=
operation. Read moreSource§impl ShrAssign<u32> for U256
impl ShrAssign<u32> for U256
Source§fn shr_assign(&mut self, rhs: u32)
fn shr_assign(&mut self, rhs: u32)
>>=
operation. Read moreSource§impl ShrAssign<u64> for U256
impl ShrAssign<u64> for U256
Source§fn shr_assign(&mut self, rhs: u64)
fn shr_assign(&mut self, rhs: u64)
>>=
operation. Read moreSource§impl ShrAssign<u8> for U256
impl ShrAssign<u8> for U256
Source§fn shr_assign(&mut self, rhs: u8)
fn shr_assign(&mut self, rhs: u8)
>>=
operation. Read moreSource§impl ShrAssign<usize> for U256
impl ShrAssign<usize> for U256
Source§fn shr_assign(&mut self, rhs: usize)
fn shr_assign(&mut self, rhs: usize)
>>=
operation. Read moreSource§impl ShrAssign for U256
impl ShrAssign for U256
Source§fn shr_assign(&mut self, rhs: U256)
fn shr_assign(&mut self, rhs: U256)
>>=
operation. Read moreSource§impl SubAssign<&U256> for U256
impl SubAssign<&U256> for U256
Source§fn sub_assign(&mut self, rhs: &U256)
fn sub_assign(&mut self, rhs: &U256)
-=
operation. Read moreSource§impl SubAssign<&u128> for U256
impl SubAssign<&u128> for U256
Source§fn sub_assign(&mut self, rhs: &u128)
fn sub_assign(&mut self, rhs: &u128)
-=
operation. Read moreSource§impl SubAssign<u128> for U256
impl SubAssign<u128> for U256
Source§fn sub_assign(&mut self, rhs: u128)
fn sub_assign(&mut self, rhs: u128)
-=
operation. Read moreSource§impl SubAssign for U256
impl SubAssign for U256
Source§fn sub_assign(&mut self, rhs: U256)
fn sub_assign(&mut self, rhs: U256)
-=
operation. Read moreimpl Copy for U256
impl Eq for U256
impl StructuralPartialEq for U256
Auto Trait Implementations§
impl Freeze for U256
impl RefUnwindSafe for U256
impl Send for U256
impl Sync for U256
impl Unpin for U256
impl UnwindSafe for U256
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
Source§impl<T, U, V, W, E, C> Compare<(T, U, V, W)> for C
impl<T, U, V, W, E, C> Compare<(T, U, V, W)> for C
type Error = E
fn compare( &self, a: &(T, U, V, W), b: &(T, U, V, W), ) -> Result<Ordering, <C as Compare<(T, U, V, W)>>::Error>
Source§impl<T, U, V, W, X, E, C> Compare<(T, U, V, W, X)> for C
impl<T, U, V, W, X, E, C> Compare<(T, U, V, W, X)> for C
type Error = E
fn compare( &self, a: &(T, U, V, W, X), b: &(T, U, V, W, X), ) -> Result<Ordering, <C as Compare<(T, U, V, W, X)>>::Error>
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
Source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.