i-slint-core 1.9.1

Internal Slint Runtime Library.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
// Copyright © SixtyFPS GmbH <info@slint.dev>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-Royalty-free-2.0 OR LicenseRef-Slint-Software-3.0

//! module for the SharedVector and related things
#![allow(unsafe_code)]
#![warn(missing_docs)]
use core::fmt::Debug;
use core::mem::MaybeUninit;
use core::ops::Deref;
use core::ptr::NonNull;

use portable_atomic as atomic;

#[repr(C)]
struct SharedVectorHeader {
    refcount: atomic::AtomicIsize,
    size: usize,
    capacity: usize,
}

#[repr(C)]
struct SharedVectorInner<T> {
    header: SharedVectorHeader,
    data: MaybeUninit<T>,
}

fn compute_inner_layout<T>(capacity: usize) -> core::alloc::Layout {
    core::alloc::Layout::new::<SharedVectorHeader>()
        .extend(core::alloc::Layout::array::<T>(capacity).unwrap())
        .unwrap()
        .0
}

unsafe fn drop_inner<T>(mut inner: NonNull<SharedVectorInner<T>>) {
    debug_assert_eq!(inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed), 0);
    let data_ptr = inner.as_mut().data.as_mut_ptr();
    for x in 0..inner.as_ref().header.size {
        core::ptr::drop_in_place(data_ptr.add(x));
    }
    alloc::alloc::dealloc(
        inner.as_ptr() as *mut u8,
        compute_inner_layout::<T>(inner.as_ref().header.capacity),
    )
}

/// Allocate the memory for the SharedVector with the given capacity. Return the inner with size and refcount set to 1
fn alloc_with_capacity<T>(capacity: usize) -> NonNull<SharedVectorInner<T>> {
    let ptr = unsafe { ::alloc::alloc::alloc(compute_inner_layout::<T>(capacity)) };
    assert!(!ptr.is_null(), "allocation of {:?} bytes failed", capacity);
    unsafe {
        core::ptr::write(
            ptr as *mut SharedVectorHeader,
            SharedVectorHeader { refcount: 1.into(), size: 0, capacity },
        );
    }
    NonNull::new(ptr).unwrap().cast()
}

/// Return a new capacity suitable for this vector
/// Loosely based on alloc::raw_vec::RawVec::grow_amortized.
fn capacity_for_grow(current_cap: usize, required_cap: usize, elem_size: usize) -> usize {
    if current_cap >= required_cap {
        return current_cap;
    }
    let cap = core::cmp::max(current_cap * 2, required_cap);
    let min_non_zero_cap = if elem_size == 1 {
        8
    } else if elem_size <= 1024 {
        4
    } else {
        1
    };
    core::cmp::max(min_non_zero_cap, cap)
}

#[repr(C)]
/// SharedVector holds a reference-counted read-only copy of `[T]`.
pub struct SharedVector<T> {
    inner: NonNull<SharedVectorInner<T>>,
}

// Safety: We use atomic reference counting, and if T is Send, we can send the vector to another thread
unsafe impl<T: Send> Send for SharedVector<T> {}

impl<T> Drop for SharedVector<T> {
    fn drop(&mut self) {
        unsafe {
            if self
                .inner
                .cast::<SharedVectorHeader>()
                .as_ref()
                .refcount
                .load(atomic::Ordering::Relaxed)
                < 0
            {
                return;
            }
            if self.inner.as_ref().header.refcount.fetch_sub(1, atomic::Ordering::SeqCst) == 1 {
                drop_inner(self.inner)
            }
        }
    }
}

impl<T> Clone for SharedVector<T> {
    fn clone(&self) -> Self {
        unsafe {
            if self
                .inner
                .cast::<SharedVectorHeader>()
                .as_ref()
                .refcount
                .load(atomic::Ordering::Relaxed)
                > 0
            {
                self.inner.as_ref().header.refcount.fetch_add(1, atomic::Ordering::SeqCst);
            }
            SharedVector { inner: self.inner }
        }
    }
}

impl<T> SharedVector<T> {
    /// Create a new empty array with a pre-allocated capacity in number of items
    pub fn with_capacity(capacity: usize) -> Self {
        Self { inner: alloc_with_capacity(capacity) }
    }

    fn as_ptr(&self) -> *const T {
        unsafe { self.inner.as_ref().data.as_ptr() }
    }

    /// Number of elements in the array
    pub fn len(&self) -> usize {
        unsafe { self.inner.cast::<SharedVectorHeader>().as_ref().size }
    }

    /// Return true if the SharedVector is empty
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return a slice to the array
    pub fn as_slice(&self) -> &[T] {
        if self.is_empty() {
            &[]
        } else {
            // Safety: When len > 0, we know that the pointer holds an array of the size of len
            unsafe { core::slice::from_raw_parts(self.as_ptr(), self.len()) }
        }
    }

    /// Returns the number of elements the vector can hold without reallocating, when not shared
    fn capacity(&self) -> usize {
        unsafe { self.inner.cast::<SharedVectorHeader>().as_ref().capacity }
    }
}

impl<T: Clone> SharedVector<T> {
    /// Create a SharedVector from a slice
    pub fn from_slice(slice: &[T]) -> SharedVector<T> {
        Self::from(slice)
    }

    /// Ensure that the reference count is 1 so the array can be changed.
    /// If that's not the case, the array will be cloned
    fn detach(&mut self, new_capacity: usize) {
        let is_shared =
            unsafe { self.inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed) } != 1;
        if !is_shared && new_capacity <= self.capacity() {
            return;
        }
        let mut new_array = SharedVector::with_capacity(new_capacity);
        core::mem::swap(&mut self.inner, &mut new_array.inner);
        let mut size = 0;
        for x in new_array.into_iter() {
            assert_ne!(size, new_capacity);
            unsafe {
                core::ptr::write(self.inner.as_mut().data.as_mut_ptr().add(size), x);
                size += 1;
                self.inner.as_mut().header.size = size;
            }
            if size == new_capacity {
                break;
            }
        }
    }

    /// Return a mutable slice to the array. If the array was shared, this will make a copy of the array.
    pub fn make_mut_slice(&mut self) -> &mut [T] {
        self.detach(self.len());
        unsafe { core::slice::from_raw_parts_mut(self.as_ptr() as *mut T, self.len()) }
    }

    /// Add an element to the array. If the array was shared, this will make a copy of the array.
    pub fn push(&mut self, value: T) {
        self.detach(capacity_for_grow(self.capacity(), self.len() + 1, core::mem::size_of::<T>()));
        unsafe {
            core::ptr::write(
                self.inner.as_mut().data.as_mut_ptr().add(self.inner.as_mut().header.size),
                value,
            );
            self.inner.as_mut().header.size += 1;
        }
    }

    /// Removes last element from the array and returns it.
    /// If the array was shared, this will make a copy of the array.
    pub fn pop(&mut self) -> Option<T> {
        if self.is_empty() {
            None
        } else {
            self.detach(self.len());
            unsafe {
                self.inner.as_mut().header.size -= 1;
                Some(core::ptr::read(self.inner.as_mut().data.as_mut_ptr().add(self.len())))
            }
        }
    }

    /// Resize the array to the given size.
    /// If the array was smaller new elements will be initialized with the value.
    /// If the array was bigger, extra elements will be discarded
    ///
    /// ```
    /// use i_slint_core::SharedVector;
    /// let mut shared_vector = SharedVector::<u32>::from_slice(&[1, 2, 3]);
    /// shared_vector.resize(5, 8);
    /// assert_eq!(shared_vector.as_slice(), &[1, 2, 3, 8, 8]);
    /// shared_vector.resize(2, 0);
    /// assert_eq!(shared_vector.as_slice(), &[1, 2]);
    /// ```
    pub fn resize(&mut self, new_len: usize, value: T) {
        if self.len() == new_len {
            return;
        }
        self.detach(new_len);
        // Safety: detach ensured that the array is not shared.
        let inner = unsafe { self.inner.as_mut() };

        if inner.header.size >= new_len {
            self.shrink(new_len);
        } else {
            while inner.header.size < new_len {
                // Safety: The array must have a capacity of at least new_len because of the detach call earlier
                unsafe {
                    core::ptr::write(inner.data.as_mut_ptr().add(inner.header.size), value.clone());
                }
                inner.header.size += 1;
            }
        }
    }

    fn shrink(&mut self, new_len: usize) {
        if self.len() == new_len {
            return;
        }

        assert!(
            unsafe { self.inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed) } == 1
        );
        // Safety: caller (and above debug_assert) must ensure that the array is not shared.
        let inner = unsafe { self.inner.as_mut() };

        while inner.header.size > new_len {
            inner.header.size -= 1;
            // Safety: The array was of size inner.header.size, so there should be an element there
            unsafe {
                core::ptr::drop_in_place(inner.data.as_mut_ptr().add(inner.header.size));
            }
        }
    }

    /// Clears the vector and removes all elements.
    pub fn clear(&mut self) {
        let is_shared =
            unsafe { self.inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed) } != 1;
        if is_shared {
            *self = SharedVector::default();
        } else {
            self.shrink(0)
        }
    }
}

impl<T> Deref for SharedVector<T> {
    type Target = [T];
    fn deref(&self) -> &Self::Target {
        self.as_slice()
    }
}

/* FIXME: is this a good idea to implement DerefMut knowing what it might detach?
impl<T> DerefMut for SharedVector<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut_slice()
    }
}*/

impl<T: Clone> From<&[T]> for SharedVector<T> {
    fn from(slice: &[T]) -> Self {
        let capacity = slice.len();
        let mut result = Self::with_capacity(capacity);
        for x in slice {
            unsafe {
                core::ptr::write(
                    result.inner.as_mut().data.as_mut_ptr().add(result.inner.as_mut().header.size),
                    x.clone(),
                );
                result.inner.as_mut().header.size += 1;
            }
        }
        result
    }
}

impl<T, const N: usize> From<[T; N]> for SharedVector<T> {
    fn from(array: [T; N]) -> Self {
        array.into_iter().collect()
    }
}

impl<T> FromIterator<T> for SharedVector<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        let mut iter = iter.into_iter();
        let mut capacity = iter.size_hint().0;
        let mut result = Self::with_capacity(capacity);
        let mut size = 0;
        while let Some(x) = iter.next() {
            if size >= capacity {
                capacity = capacity_for_grow(
                    capacity,
                    size + 1 + iter.size_hint().0,
                    core::mem::size_of::<T>(),
                );
                unsafe {
                    result.inner.as_ref().header.refcount.store(0, atomic::Ordering::Relaxed)
                };
                let mut iter = IntoIter(IntoIterInner::UnShared(result.inner, 0));
                result.inner = alloc_with_capacity::<T>(capacity);
                match &mut iter.0 {
                    IntoIterInner::UnShared(old_inner, begin) => {
                        while *begin < size {
                            unsafe {
                                core::ptr::write(
                                    result.inner.as_mut().data.as_mut_ptr().add(*begin),
                                    core::ptr::read(old_inner.as_ref().data.as_ptr().add(*begin)),
                                );
                                *begin += 1;
                                result.inner.as_mut().header.size = *begin;
                            }
                        }
                    }
                    _ => unreachable!(),
                }
            }
            debug_assert_eq!(result.len(), size);
            debug_assert!(result.capacity() > size);
            unsafe {
                core::ptr::write(result.inner.as_mut().data.as_mut_ptr().add(size), x);
                size += 1;
                result.inner.as_mut().header.size = size;
            }
        }
        result
    }
}

impl<T: Clone> Extend<T> for SharedVector<T> {
    fn extend<X: IntoIterator<Item = T>>(&mut self, iter: X) {
        let iter = iter.into_iter();
        let hint = iter.size_hint().0;
        if hint > 0 {
            self.detach(capacity_for_grow(
                self.capacity(),
                self.len() + hint,
                core::mem::size_of::<T>(),
            ));
        }
        for item in iter {
            self.push(item);
        }
    }
}

static SHARED_NULL: SharedVectorHeader =
    SharedVectorHeader { refcount: atomic::AtomicIsize::new(-1), size: 0, capacity: 0 };

impl<T> Default for SharedVector<T> {
    fn default() -> Self {
        SharedVector { inner: NonNull::from(&SHARED_NULL).cast() }
    }
}

impl<T: Debug> Debug for SharedVector<T> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        self.as_slice().fmt(f)
    }
}

impl<T> AsRef<[T]> for SharedVector<T> {
    #[inline]
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T, U> PartialEq<U> for SharedVector<T>
where
    U: ?Sized + AsRef<[T]>,
    T: PartialEq,
{
    fn eq(&self, other: &U) -> bool {
        self.as_slice() == other.as_ref()
    }
}

impl<T: Eq> Eq for SharedVector<T> {}

impl<T: Clone> IntoIterator for SharedVector<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter(unsafe {
            if self.inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed) == 1 {
                let inner = self.inner;
                core::mem::forget(self);
                inner.as_ref().header.refcount.store(0, atomic::Ordering::Relaxed);
                IntoIterInner::UnShared(inner, 0)
            } else {
                IntoIterInner::Shared(self, 0)
            }
        })
    }
}

#[cfg(feature = "serde")]
use serde::ser::SerializeSeq;
#[cfg(feature = "serde")]
impl<T> serde::Serialize for SharedVector<T>
where
    T: serde::Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let mut seq = serializer.serialize_seq(Some(self.len()))?;
        for item in self.iter() {
            seq.serialize_element(item)?;
        }
        seq.end()
    }
}

#[cfg(feature = "serde")]
impl<'de, T> serde::Deserialize<'de> for SharedVector<T>
where
    T: Clone + serde::Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        let mut elements: alloc::vec::Vec<T> = serde::Deserialize::deserialize(deserializer)?;
        let mut shared_vec = SharedVector::with_capacity(elements.len());
        for elem in elements.drain(..) {
            shared_vec.push(elem);
        }
        Ok(shared_vec)
    }
}

enum IntoIterInner<T> {
    Shared(SharedVector<T>, usize),
    // Elements up to the usize member are already moved out
    UnShared(NonNull<SharedVectorInner<T>>, usize),
}

impl<T> Drop for IntoIterInner<T> {
    fn drop(&mut self) {
        match self {
            IntoIterInner::Shared(..) => { /* drop of SharedVector takes care of it */ }
            IntoIterInner::UnShared(mut inner, begin) => unsafe {
                debug_assert_eq!(inner.as_ref().header.refcount.load(atomic::Ordering::Relaxed), 0);
                let data_ptr = inner.as_mut().data.as_mut_ptr();
                for x in (*begin)..inner.as_ref().header.size {
                    core::ptr::drop_in_place(data_ptr.add(x));
                }
                ::alloc::alloc::dealloc(
                    inner.as_ptr() as *mut u8,
                    compute_inner_layout::<T>(inner.as_ref().header.capacity),
                )
            },
        }
    }
}

/// An iterator that moves out of a SharedVector.
///
/// This `struct` is created by the `into_iter` method on [`SharedVector`] (provided
/// by the [`IntoIterator`] trait).
pub struct IntoIter<T>(IntoIterInner<T>);

impl<T: Clone> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match &mut self.0 {
            IntoIterInner::Shared(array, moved) => {
                let result = array.as_slice().get(*moved).cloned();
                *moved += 1;
                result
            }
            IntoIterInner::UnShared(inner, begin) => unsafe {
                if *begin < inner.as_ref().header.size {
                    let r = core::ptr::read(inner.as_ref().data.as_ptr().add(*begin));
                    *begin += 1;
                    Some(r)
                } else {
                    None
                }
            },
        }
    }
}

#[test]
fn simple_test() {
    let x: SharedVector<i32> = SharedVector::from([1, 2, 3]);
    let y: SharedVector<i32> = SharedVector::from([3, 2, 1]);
    assert_eq!(x, x.clone());
    assert_ne!(x, y);
    let z: [i32; 3] = [1, 2, 3];
    assert_eq!(z, x.as_slice());
    let vec: Vec<i32> = vec![1, 2, 3];
    assert_eq!(x, vec);
    let def: SharedVector<i32> = Default::default();
    assert_eq!(def, SharedVector::<i32>::default());
    assert_ne!(def, x);
}

#[test]
fn push_test() {
    let mut x: SharedVector<i32> = SharedVector::from([1, 2, 3]);
    let y = x.clone();
    x.push(4);
    x.push(5);
    x.push(6);
    assert_eq!(x.as_slice(), &[1, 2, 3, 4, 5, 6]);
    assert_eq!(y.as_slice(), &[1, 2, 3]);
}

#[test]
#[should_panic]
fn invalid_capacity_test() {
    let _: SharedVector<u8> = SharedVector::with_capacity(usize::MAX / 2 - 1000);
}

#[test]
fn collect_from_iter_with_no_size_hint() {
    struct NoSizeHintIter<'a> {
        data: &'a [&'a str],
        i: usize,
    }

    impl<'a> Iterator for NoSizeHintIter<'a> {
        type Item = String;

        fn next(&mut self) -> Option<Self::Item> {
            if self.i >= self.data.len() {
                return None;
            }
            let item = self.data[self.i];
            self.i += 1;
            Some(item.to_string())
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (0, None)
        }
    }

    // 5 elements to be above the initial "grow"-capacity of 4 and thus require one realloc.
    let input = NoSizeHintIter { data: &["Hello", "sweet", "world", "of", "iterators"], i: 0 };

    let shared_vec: SharedVector<String> = input.collect();
    assert_eq!(shared_vec.as_slice(), &["Hello", "sweet", "world", "of", "iterators"]);
}

#[test]
fn test_capacity_grows_only_when_needed() {
    let mut vec: SharedVector<u8> = SharedVector::with_capacity(2);
    vec.push(0);
    assert_eq!(vec.capacity(), 2);
    vec.push(0);
    assert_eq!(vec.capacity(), 2);
    vec.push(0);
    assert_eq!(vec.len(), 3);
    assert!(vec.capacity() > 2);
}

#[test]
fn test_vector_clear() {
    let mut vec: SharedVector<String> = Default::default();
    vec.clear();
    vec.push("Hello".into());
    vec.push("World".into());
    vec.push("of".into());
    vec.push("Vectors".into());

    let mut copy = vec.clone();

    assert_eq!(vec.len(), 4);
    let orig_cap = vec.capacity();
    assert!(orig_cap >= vec.len());
    vec.clear();
    assert_eq!(vec.len(), 0);
    assert_eq!(vec.capacity(), 0); // vec was shared, so start with new empty vector.
    vec.push("Welcome back".into());
    assert_eq!(vec.len(), 1);
    assert!(vec.capacity() >= vec.len());

    assert_eq!(copy.len(), 4);
    assert_eq!(copy.capacity(), orig_cap);
    copy.clear(); // copy is not shared (anymore), retain capacity.
    assert_eq!(copy.capacity(), orig_cap);
}

#[test]
fn pop_test() {
    let mut x: SharedVector<i32> = SharedVector::from([1, 2, 3]);
    let y = x.clone();
    assert_eq!(x.pop(), Some(3));
    assert_eq!(x.pop(), Some(2));
    assert_eq!(x.pop(), Some(1));
    assert_eq!(x.pop(), None);
    assert!(x.is_empty());
    assert_eq!(y.as_slice(), &[1, 2, 3]);
}

#[cfg(feature = "ffi")]
pub(crate) mod ffi {
    use super::*;

    #[no_mangle]
    /// This function is used for the low-level C++ interface to allocate the backing vector of a SharedVector.
    pub unsafe extern "C" fn slint_shared_vector_allocate(size: usize, align: usize) -> *mut u8 {
        alloc::alloc::alloc(alloc::alloc::Layout::from_size_align(size, align).unwrap())
    }

    #[no_mangle]
    /// This function is used for the low-level C++ interface to deallocate the backing vector of a SharedVector
    pub unsafe extern "C" fn slint_shared_vector_free(ptr: *mut u8, size: usize, align: usize) {
        alloc::alloc::dealloc(ptr, alloc::alloc::Layout::from_size_align(size, align).unwrap())
    }

    #[no_mangle]
    /// This function is used for the low-level C++ interface to initialize the empty SharedVector.
    pub unsafe extern "C" fn slint_shared_vector_empty() -> *const u8 {
        &SHARED_NULL as *const _ as *const u8
    }
}

#[cfg(feature = "serde")]
#[test]
fn test_serialize_deserialize_sharedvector() {
    let v = SharedVector::from([1, 2, 3]);
    let serialized = serde_json::to_string(&v).unwrap();
    let deserialized: SharedVector<i32> = serde_json::from_str(&serialized).unwrap();
    assert_eq!(v, deserialized);
}