pub trait CeilingLogBasePowerOf2<POW> {
    type Output;

    // Required method
    fn ceiling_log_base_power_of_2(self, pow: POW) -> Self::Output;
}
Expand description

Calculates the ceiling of the base-$2^k$ logarithm of a number.

Required Associated Types§

Required Methods§

source

fn ceiling_log_base_power_of_2(self, pow: POW) -> Self::Output

Implementations on Foreign Types§

source§

impl CeilingLogBasePowerOf2<u64> for f32

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> i64

Returns the ceiling of the base-$2^k$ logarithm of a positive float.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self or pow are 0.

§Examples

See here.

source§

type Output = i64

source§

impl CeilingLogBasePowerOf2<u64> for f64

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> i64

Returns the ceiling of the base-$2^k$ logarithm of a positive float.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self or pow are 0.

§Examples

See here.

source§

type Output = i64

source§

impl CeilingLogBasePowerOf2<u64> for u8

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

source§

impl CeilingLogBasePowerOf2<u64> for u16

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

source§

impl CeilingLogBasePowerOf2<u64> for u32

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

source§

impl CeilingLogBasePowerOf2<u64> for u64

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

source§

impl CeilingLogBasePowerOf2<u64> for u128

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

source§

impl CeilingLogBasePowerOf2<u64> for usize

source§

fn ceiling_log_base_power_of_2(self, pow: u64) -> u64

Returns the ceiling of the base-$2^k$ logarithm of a positive integer.

$f(x, k) = \lceil\log_{2^k} x\rceil$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if self is infinite, NaN, or less than or equal to zero, or if pow is zero.

§Examples

See here.

source§

type Output = u64

Implementors§