Trait malachite_base::num::arithmetic::traits::DivRound

source ·
pub trait DivRound<RHS = Self> {
    type Output;

    // Required method
    fn div_round(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering);
}
Expand description

Divides a number by another number and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Required Associated Types§

Required Methods§

source

fn div_round(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering)

Implementations on Foreign Types§

source§

impl DivRound for i8

source§

fn div_round(self, other: i8, rm: RoundingMode) -> (i8, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = i8

source§

impl DivRound for i16

source§

fn div_round(self, other: i16, rm: RoundingMode) -> (i16, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = i16

source§

impl DivRound for i32

source§

fn div_round(self, other: i32, rm: RoundingMode) -> (i32, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = i32

source§

impl DivRound for i64

source§

fn div_round(self, other: i64, rm: RoundingMode) -> (i64, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = i64

source§

impl DivRound for i128

source§

fn div_round(self, other: i128, rm: RoundingMode) -> (i128, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = i128

source§

impl DivRound for isize

source§

fn div_round(self, other: isize, rm: RoundingMode) -> (isize, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor. $$

$$ g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil. $$

$$ g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, if self is Self::MIN and other is -1, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = isize

source§

impl DivRound for u8

source§

fn div_round(self, other: u8, rm: RoundingMode) -> (u8, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = u8

source§

impl DivRound for u16

source§

fn div_round(self, other: u16, rm: RoundingMode) -> (u16, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = u16

source§

impl DivRound for u32

source§

fn div_round(self, other: u32, rm: RoundingMode) -> (u32, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = u32

source§

impl DivRound for u64

source§

fn div_round(self, other: u64, rm: RoundingMode) -> (u64, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = u64

source§

impl DivRound for u128

source§

fn div_round(self, other: u128, rm: RoundingMode) -> (u128, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = u128

source§

impl DivRound for usize

source§

fn div_round(self, other: usize, rm: RoundingMode) -> (usize, Ordering)

Divides a value by another value and rounds according to a specified rounding mode. An Ordering is also returned, indicating whether the returned value is less than, equal to, or greater than the exact value.

Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first element of the pair, without the Ordering:

$$ g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor. $$

$$ g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil. $$

$$ g(x, y, \mathrm{Nearest}) = \begin{cases} \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor < \frac{1}{2}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor > \frac{1}{2}, \\ \lfloor q \rfloor & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is even}, \\ \lceil q \rceil & \text{if} \quad q - \lfloor q \rfloor = \frac{1}{2} \ \text{and} \ \lfloor q \rfloor \ \text{is odd.} \end{cases} $$

$g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.

Then

$f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.

§Worst-case complexity

Constant time and additional memory.

§Panics

Panics if other is zero, or if rm is Exact but self is not divisible by other.

§Examples

See here.

source§

type Output = usize

Implementors§