Trait malachite_base::num::arithmetic::traits::ModInverse
source · pub trait ModInverse<M = Self> {
type Output;
// Required method
fn mod_inverse(self, m: M) -> Option<Self::Output>;
}
Expand description
Finds the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Required Associated Types§
Required Methods§
fn mod_inverse(self, m: M) -> Option<Self::Output>
Implementations on Foreign Types§
source§impl ModInverse for u8
impl ModInverse for u8
source§fn mod_inverse(self, m: u8) -> Option<u8>
fn mod_inverse(self, m: u8) -> Option<u8>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.
type Output = u8
source§impl ModInverse for u16
impl ModInverse for u16
source§fn mod_inverse(self, m: u16) -> Option<u16>
fn mod_inverse(self, m: u16) -> Option<u16>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.
type Output = u16
source§impl ModInverse for u32
impl ModInverse for u32
source§fn mod_inverse(self, m: u32) -> Option<u32>
fn mod_inverse(self, m: u32) -> Option<u32>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.
type Output = u32
source§impl ModInverse for u64
impl ModInverse for u64
source§fn mod_inverse(self, m: u64) -> Option<u64>
fn mod_inverse(self, m: u64) -> Option<u64>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.
type Output = u64
source§impl ModInverse for u128
impl ModInverse for u128
source§fn mod_inverse(self, m: u128) -> Option<u128>
fn mod_inverse(self, m: u128) -> Option<u128>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.
type Output = u128
source§impl ModInverse for usize
impl ModInverse for usize
source§fn mod_inverse(self, m: usize) -> Option<usize>
fn mod_inverse(self, m: usize) -> Option<usize>
Computes the multiplicative inverse of a number modulo another number $m$. The input must be already reduced modulo $m$.
Returns None
if $x$ and $m$ are not coprime.
$f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
§Worst-case complexity
$T(n) = O(n^2)$
$M(n) = O(n)$
where $T$ is time, $M$ is additional memory, and $n$ is
max(self.significant_bits(), m.significant_bits())
.
§Panics
Panics if self
is greater than or equal to m
.
§Examples
See here.