Trait malachite_base::num::arithmetic::traits::ModPowPrecomputedAssign
source · pub trait ModPowPrecomputedAssign<RHS: Two = Self, M = Self>: ModPowPrecomputed<RHS, M> {
// Required method
fn mod_pow_precomputed_assign(&mut self, exp: RHS, m: M, data: &Self::Data);
}
Expand description
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
If multiple modular exponentiations with the same modulus are necessary, it can be quicker to
precompute some piece of data and reuse it in the exponentiation calls. This trait provides a
function for using precomputed data during exponentiation. For precomputing the data, use the
precompute_mod_pow_data
function in
ModPowPrecomputed
.
Required Methods§
fn mod_pow_precomputed_assign(&mut self, exp: RHS, m: M, data: &Self::Data)
Object Safety§
Implementations on Foreign Types§
source§impl ModPowPrecomputedAssign for u64
impl ModPowPrecomputedAssign for u64
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u64, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u64, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.
source§impl ModPowPrecomputedAssign<u64> for u8
impl ModPowPrecomputedAssign<u64> for u8
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u8, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u8, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.
source§impl ModPowPrecomputedAssign<u64> for u16
impl ModPowPrecomputedAssign<u64> for u16
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u16, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u16, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.
source§impl ModPowPrecomputedAssign<u64> for u32
impl ModPowPrecomputedAssign<u64> for u32
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u32, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u32, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.
source§impl ModPowPrecomputedAssign<u64> for u128
impl ModPowPrecomputedAssign<u64> for u128
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u128, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: u128, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.
source§impl ModPowPrecomputedAssign<u64> for usize
impl ModPowPrecomputedAssign<u64> for usize
source§fn mod_pow_precomputed_assign(&mut self, exp: u64, m: usize, data: &Self::Data)
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: usize, data: &Self::Data)
Raises a number to a power modulo another number $m$, in place. The base must be already reduced modulo $m$.
Some precomputed data is provided; this speeds up computations involving several
modular exponentiations with the same modulus. The precomputed data should be
obtained using
precompute_mod_pow_data
.
§Worst-case complexity
$T(n) = O(n)$
$M(n) = O(1)$
where $T$ is time, $M$ is additional memory, and $n$ is exp.significant_bits()
.
§Examples
See here.