Trait malachite_base::num::arithmetic::traits::SaturatingAddMul
source · pub trait SaturatingAddMul<Y = Self, Z = Self> {
type Output;
// Required method
fn saturating_add_mul(self, y: Y, z: Z) -> Self::Output;
}
Expand description
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
Required Associated Types§
Required Methods§
fn saturating_add_mul(self, y: Y, z: Z) -> Self::Output
Implementations on Foreign Types§
source§impl SaturatingAddMul for i8
impl SaturatingAddMul for i8
source§fn saturating_add_mul(self, y: i8, z: i8) -> i8
fn saturating_add_mul(self, y: i8, z: i8) -> i8
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i8
source§impl SaturatingAddMul for i16
impl SaturatingAddMul for i16
source§fn saturating_add_mul(self, y: i16, z: i16) -> i16
fn saturating_add_mul(self, y: i16, z: i16) -> i16
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i16
source§impl SaturatingAddMul for i32
impl SaturatingAddMul for i32
source§fn saturating_add_mul(self, y: i32, z: i32) -> i32
fn saturating_add_mul(self, y: i32, z: i32) -> i32
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i32
source§impl SaturatingAddMul for i64
impl SaturatingAddMul for i64
source§fn saturating_add_mul(self, y: i64, z: i64) -> i64
fn saturating_add_mul(self, y: i64, z: i64) -> i64
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i64
source§impl SaturatingAddMul for i128
impl SaturatingAddMul for i128
source§fn saturating_add_mul(self, y: i128, z: i128) -> i128
fn saturating_add_mul(self, y: i128, z: i128) -> i128
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = i128
source§impl SaturatingAddMul for isize
impl SaturatingAddMul for isize
source§fn saturating_add_mul(self, y: isize, z: isize) -> isize
fn saturating_add_mul(self, y: isize, z: isize) -> isize
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = isize
source§impl SaturatingAddMul for u8
impl SaturatingAddMul for u8
source§fn saturating_add_mul(self, y: u8, z: u8) -> u8
fn saturating_add_mul(self, y: u8, z: u8) -> u8
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u8
source§impl SaturatingAddMul for u16
impl SaturatingAddMul for u16
source§fn saturating_add_mul(self, y: u16, z: u16) -> u16
fn saturating_add_mul(self, y: u16, z: u16) -> u16
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u16
source§impl SaturatingAddMul for u32
impl SaturatingAddMul for u32
source§fn saturating_add_mul(self, y: u32, z: u32) -> u32
fn saturating_add_mul(self, y: u32, z: u32) -> u32
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u32
source§impl SaturatingAddMul for u64
impl SaturatingAddMul for u64
source§fn saturating_add_mul(self, y: u64, z: u64) -> u64
fn saturating_add_mul(self, y: u64, z: u64) -> u64
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u64
source§impl SaturatingAddMul for u128
impl SaturatingAddMul for u128
source§fn saturating_add_mul(self, y: u128, z: u128) -> u128
fn saturating_add_mul(self, y: u128, z: u128) -> u128
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
type Output = u128
source§impl SaturatingAddMul for usize
impl SaturatingAddMul for usize
source§fn saturating_add_mul(self, y: usize, z: usize) -> usize
fn saturating_add_mul(self, y: usize, z: usize) -> usize
Adds a number and the product of two other numbers, saturating at the numeric bounds instead of overflowing.
$$
f(x, y, z) = \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.