Trait malachite_base::num::arithmetic::traits::SaturatingAddMulAssign
source · pub trait SaturatingAddMulAssign<Y = Self, Z = Self> {
// Required method
fn saturating_add_mul_assign(&mut self, y: Y, z: Z);
}
Expand description
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
Required Methods§
fn saturating_add_mul_assign(&mut self, y: Y, z: Z)
Implementations on Foreign Types§
source§impl SaturatingAddMulAssign for i8
impl SaturatingAddMulAssign for i8
source§fn saturating_add_mul_assign(&mut self, y: i8, z: i8)
fn saturating_add_mul_assign(&mut self, y: i8, z: i8)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for i16
impl SaturatingAddMulAssign for i16
source§fn saturating_add_mul_assign(&mut self, y: i16, z: i16)
fn saturating_add_mul_assign(&mut self, y: i16, z: i16)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for i32
impl SaturatingAddMulAssign for i32
source§fn saturating_add_mul_assign(&mut self, y: i32, z: i32)
fn saturating_add_mul_assign(&mut self, y: i32, z: i32)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for i64
impl SaturatingAddMulAssign for i64
source§fn saturating_add_mul_assign(&mut self, y: i64, z: i64)
fn saturating_add_mul_assign(&mut self, y: i64, z: i64)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for i128
impl SaturatingAddMulAssign for i128
source§fn saturating_add_mul_assign(&mut self, y: i128, z: i128)
fn saturating_add_mul_assign(&mut self, y: i128, z: i128)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for isize
impl SaturatingAddMulAssign for isize
source§fn saturating_add_mul_assign(&mut self, y: isize, z: isize)
fn saturating_add_mul_assign(&mut self, y: isize, z: isize)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for u8
impl SaturatingAddMulAssign for u8
source§fn saturating_add_mul_assign(&mut self, y: u8, z: u8)
fn saturating_add_mul_assign(&mut self, y: u8, z: u8)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for u16
impl SaturatingAddMulAssign for u16
source§fn saturating_add_mul_assign(&mut self, y: u16, z: u16)
fn saturating_add_mul_assign(&mut self, y: u16, z: u16)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for u32
impl SaturatingAddMulAssign for u32
source§fn saturating_add_mul_assign(&mut self, y: u32, z: u32)
fn saturating_add_mul_assign(&mut self, y: u32, z: u32)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for u64
impl SaturatingAddMulAssign for u64
source§fn saturating_add_mul_assign(&mut self, y: u64, z: u64)
fn saturating_add_mul_assign(&mut self, y: u64, z: u64)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for u128
impl SaturatingAddMulAssign for u128
source§fn saturating_add_mul_assign(&mut self, y: u128, z: u128)
fn saturating_add_mul_assign(&mut self, y: u128, z: u128)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.
source§impl SaturatingAddMulAssign for usize
impl SaturatingAddMulAssign for usize
source§fn saturating_add_mul_assign(&mut self, y: usize, z: usize)
fn saturating_add_mul_assign(&mut self, y: usize, z: usize)
Adds a number and the product of two other numbers in place, saturating at the numeric bounds instead of overflowing.
$$
x \gets \begin{cases}
x + yz & \text{if} \quad m \leq x + yz \leq M, \\
M & \text{if} \quad x + yz > M, \\
m & \text{if} \quad x + yz < m,
\end{cases}
$$
where $m$ is Self::MIN
and $M$ is Self::MAX
.
§Worst-case complexity
Constant time and additional memory.
§Examples
See here.